Antibiotic resistance in faecal microbiota of Greek healthy infants - PubMed (original) (raw)
Antibiotic resistance in faecal microbiota of Greek healthy infants
E K Mitsou et al. Benef Microbes. 2010 Sep.
Abstract
Increasing use of antibiotics for the treatment of infectious diseases and also for non-therapeutic reasons (agriculture, animal husbandry and aquaculture) has led to the increasing incidence of antibiotic resistance and the ineffectiveness of antimicrobial treatment. Commensal intestinal bacteria are very often exposed to the selective pressure of antimicrobial agents and may constitute a reservoir of antibiotic resistance determinants that can be transferred to pathogens. The present study aimed to investigate the antibiotic susceptibility profile and the presence of selected resistance genes in cocci isolated from the faecal microbiota of 35 healthy, full-term infants at 4, 30 and 90 days after delivery. A total of 148 gram-positive, catalase-negative cocci were isolated and tested for susceptibility to 12 different antibiotics by disk-diffusion technique. Multiplex PCR analysis was performed for the identification of Enterococcus spp. isolates and the simultaneous detection of vancomycin-resistance genes. PCR-based methodology was used also for identification of tetracycline and erythromycin resistance determinants. Identification results indicated E. faecalis as the predominant species (81 strains), followed by E. faecium, E. casseliflavus/E. flavescens and E. gallinarum. High prevalence of resistance to tetracycline (39.9%), erythromycin (35.1%), vancomycin (19.6%) and to nucleic acid synthesis inhibitors was detected. PCR data revealed 24 out of 52 erythromycin-resistant isolates carrying the ermB gene and 32 out of 59 tetracycline-resistant strains carrying tet genes, with tet(L) determinant being the most frequently detected. Only intrinsic vancomycin resistance (vanC1 and vanC2/C3) was reported among tested isolates. In conclusion, erythromycin and tetracycline acquired resistant traits are widespread among faecal cocci isolates from Greek, healthy infants under no apparent antimicrobial selective pressure.
Similar articles
- Screening fecal enterococci from Greek healthy infants for susceptibility to antimicrobial agents.
Kirtzalidou EI, Mitsou EK, Pramateftaki P, Kyriacou A. Kirtzalidou EI, et al. Microb Drug Resist. 2012 Dec;18(6):578-85. doi: 10.1089/mdr.2012.0028. Epub 2012 Jul 24. Microb Drug Resist. 2012. PMID: 22827719 - Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal.
Poeta P, Costa D, Sáenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C. Poeta P, et al. J Vet Med B Infect Dis Vet Public Health. 2005 Nov;52(9):396-402. doi: 10.1111/j.1439-0450.2005.00881.x. J Vet Med B Infect Dis Vet Public Health. 2005. PMID: 16283919 - Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems.
Jacobs L, Chenia HY. Jacobs L, et al. Int J Food Microbiol. 2007 Mar 20;114(3):295-306. doi: 10.1016/j.ijfoodmicro.2006.09.030. Epub 2006 Dec 14. Int J Food Microbiol. 2007. PMID: 17173998 - Antibiotics and the resistant microbiome.
Sommer MO, Dantas G. Sommer MO, et al. Curr Opin Microbiol. 2011 Oct;14(5):556-63. doi: 10.1016/j.mib.2011.07.005. Epub 2011 Jul 27. Curr Opin Microbiol. 2011. PMID: 21802347 Review. - Environmental pollution by antibiotics and by antibiotic resistance determinants.
Martinez JL. Martinez JL. Environ Pollut. 2009 Nov;157(11):2893-902. doi: 10.1016/j.envpol.2009.05.051. Epub 2009 Jun 27. Environ Pollut. 2009. PMID: 19560847 Review.
Cited by
- Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis.
Sarron E, Pérot M, Barbezier N, Delayre-Orthez C, Gay-Quéheillard J, Anton PM. Sarron E, et al. World J Gastroenterol. 2020 Jun 21;26(23):3145-3169. doi: 10.3748/wjg.v26.i23.3145. World J Gastroenterol. 2020. PMID: 32684732 Free PMC article. Review. - Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances.
Francino MP. Francino MP. Front Microbiol. 2016 Jan 12;6:1543. doi: 10.3389/fmicb.2015.01543. eCollection 2015. Front Microbiol. 2016. PMID: 26793178 Free PMC article. Review. - Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema.
Loo EXL, Zain A, Yap GC, Purbojati RW, Drautz-Moses DI, Koh YQ, Chong YS, Tan KH, Gluckman PD, Yap F, Eriksson JG, Tham E, Shek LP, Kjelleberg S, Schuster SC, Banerjee R, Lee BW. Loo EXL, et al. BMC Infect Dis. 2020 Apr 28;20(1):312. doi: 10.1186/s12879-020-05000-y. BMC Infect Dis. 2020. PMID: 32345218 Free PMC article. - Antibiotics and the developing infant gut microbiota and resistome.
Gibson MK, Crofts TS, Dantas G. Gibson MK, et al. Curr Opin Microbiol. 2015 Oct;27:51-6. doi: 10.1016/j.mib.2015.07.007. Epub 2015 Aug 1. Curr Opin Microbiol. 2015. PMID: 26241507 Free PMC article. Review. - Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans.
Milanović V, Aquilanti L, Tavoletti S, Garofalo C, Osimani A, De Filippis F, Ercolini D, Ferrocino I, Cagno RD, Turroni S, Lazzi C, Pellegrini N, Clementi F. Milanović V, et al. Genes (Basel). 2020 Sep 18;11(9):1088. doi: 10.3390/genes11091088. Genes (Basel). 2020. PMID: 32961926 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous