Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis - PubMed (original) (raw)
. 2011 Oct 10;503(3):250-5.
doi: 10.1016/j.neulet.2011.08.047. Epub 2011 Aug 27.
Affiliations
- PMID: 21896316
- DOI: 10.1016/j.neulet.2011.08.047
Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis
Jing Wang et al. Neurosci Lett. 2011.
Abstract
Resveratrol has recently been widely reported to be an age-delaying and neuroprotective compound, and it appears to produce these benefits by activating silent mating type information regulation 2 homolog 1 (SIRT1). However, the role that SIRT1 activation plays in the pathogenesis of amyotrophic lateral sclerosis (ALS) remains unclear. In the present study, SIRT1 expression was found to be much lower in the mutant hSOD1G93A-bearing VSC4.1 cells compared to hSOD1wt cells when both were cultured in low-serum medium, indicating the involvement of SIRT1 activation defects in the pathogenesis of ALS under energetic stress. Further investigation revealed that a 24-h treatment with 0.5-20μM resveratrol had a dose-dependent protective effect on this ALS cell model, and the effects of resveratrol on increasing cell viability, preventing cell apoptosis and elevating cellular ATP levels through promoting mitochondria biogenesis were blocked by SIRT1 inhibition. This further demonstrated a role for SIRT1 activation in the protection of neuronal cells from degeneration. These findings suggest that resveratrol can protect the ALS cell model from mutant SOD1-mediated toxicity through up-regulating the expression of SIRT1, which represents a potential therapeutic target for preventing the motor neuron degeneration in ALS patients.
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Similar articles
- Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis.
Jiang HQ, Ren M, Jiang HZ, Wang J, Zhang J, Yin X, Wang SY, Qi Y, Wang XD, Feng HL. Jiang HQ, et al. Neuroscience. 2014 Sep 26;277:132-8. doi: 10.1016/j.neuroscience.2014.03.047. Epub 2014 Mar 31. Neuroscience. 2014. PMID: 24699224 - Role of GSK-3beta activity in motor neuronal cell death induced by G93A or A4V mutant hSOD1 gene.
Koh SH, Lee YB, Kim KS, Kim HJ, Kim M, Lee YJ, Kim J, Lee KW, Kim SH. Koh SH, et al. Eur J Neurosci. 2005 Jul;22(2):301-9. doi: 10.1111/j.1460-9568.2005.04191.x. Eur J Neurosci. 2005. PMID: 16045483 - Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress.
Cookson MR, Menzies FM, Manning P, Eggett CJ, Figlewicz DA, McNeil CJ, Shaw PJ. Cookson MR, et al. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002 Jun;3(2):75-85. doi: 10.1080/146608202760196048. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002. PMID: 12215229 - [SIRT1/PGC-1: a neuroprotective axis?].
Rasouri S, Lagouge M, Auwerx J. Rasouri S, et al. Med Sci (Paris). 2007 Oct;23(10):840-4. doi: 10.1051/medsci/20072310840. Med Sci (Paris). 2007. PMID: 17937892 Review. French. - Role of endogenous nitric oxide and peroxynitrite formation in the survival and death of motor neurons in culture.
Estévez AG, Spear N, Manuel SM, Barbeito L, Radi R, Beckman JS. Estévez AG, et al. Prog Brain Res. 1998;118:269-80. doi: 10.1016/s0079-6123(08)63214-8. Prog Brain Res. 1998. PMID: 9932448 Review.
Cited by
- Mathematical modelling of metabolic regulation in aging.
Auley MT, Mooney KM, Angell PJ, Wilkinson SJ. Auley MT, et al. Metabolites. 2015 Apr 27;5(2):232-51. doi: 10.3390/metabo5020232. Metabolites. 2015. PMID: 25923415 Free PMC article. Review. - Mir-141-3p Regulates Apoptosis and Mitochondrial Membrane Potential via Targeting Sirtuin1 in a 1-Methyl-4-Phenylpyridinium in vitro Model of Parkinson's Disease.
Zheng Y, Dong L, Liu N, Luo X, He Z. Zheng Y, et al. Biomed Res Int. 2020 Nov 6;2020:7239895. doi: 10.1155/2020/7239895. eCollection 2020. Biomed Res Int. 2020. PMID: 33204711 Free PMC article. - Plant-Derived Natural Compounds for the Treatment of Amyotrophic Lateral Sclerosis: An Update.
Mohi-Ud-Din R, Mir RH, Shah AJ, Sabreen S, Wani TU, Masoodi MH, Akkol EK, Bhat ZA, Khan H. Mohi-Ud-Din R, et al. Curr Neuropharmacol. 2022;20(1):179-193. doi: 10.2174/1570159X19666210428120514. Curr Neuropharmacol. 2022. PMID: 33913406 Free PMC article. Review. - Potential Therapeutic Interventions Targeting NAD+ Metabolism for ALS.
Lundt S, Ding S. Lundt S, et al. Cells. 2024 Sep 9;13(17):1509. doi: 10.3390/cells13171509. Cells. 2024. PMID: 39273079 Free PMC article. Review. - Advances in cellular models to explore the pathophysiology of amyotrophic lateral sclerosis.
Veyrat-Durebex C, Corcia P, Dangoumau A, Laumonnier F, Piver E, Gordon PH, Andres CR, Vourc'h P, Blasco H. Veyrat-Durebex C, et al. Mol Neurobiol. 2014 Apr;49(2):966-83. doi: 10.1007/s12035-013-8573-9. Epub 2013 Nov 7. Mol Neurobiol. 2014. PMID: 24198229 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous