Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors - PubMed (original) (raw)
. 2012 Feb 19;30(3):283-8.
doi: 10.1038/nbt.2121.
Tobias Karlberg, Ekaterina Kouznetsova, Natalia Markova, Antonio Macchiarulo, Ann-Gerd Thorsell, Ewa Pol, Åsa Frostell, Torun Ekblad, Delal Öncü, Björn Kull, Graeme Michael Robertson, Roberto Pellicciari, Herwig Schüler, Johan Weigelt
Affiliations
- PMID: 22343925
- DOI: 10.1038/nbt.2121
Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors
Elisabet Wahlberg et al. Nat Biotechnol. 2012.
Abstract
Inhibitors of poly-ADP-ribose polymerase (PARP) family proteins are currently in clinical trials as cancer therapeutics, yet the specificity of many of these compounds is unknown. Here we evaluated a series of 185 small-molecule inhibitors, including research reagents and compounds being tested clinically, for the ability to bind to the catalytic domains of 13 of the 17 human PARP family members including the tankyrases, TNKS1 and TNKS2. Many of the best-known inhibitors, including TIQ-A, 6(5H)-phenanthridinone, olaparib, ABT-888 and rucaparib, bound to several PARP family members, suggesting that these molecules lack specificity and have promiscuous inhibitory activity. We also determined X-ray crystal structures for five TNKS2 ligand complexes and four PARP14 ligand complexes. In addition to showing that the majority of PARP inhibitors bind multiple targets, these results provide insight into the design of new inhibitors.
Comment in
- Profiling PARP inhibitors.
Jones P. Jones P. Nat Biotechnol. 2012 Mar 7;30(3):249-50. doi: 10.1038/nbt.2138. Nat Biotechnol. 2012. PMID: 22398621 No abstract available.
Similar articles
- Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2.
Qiu W, Lam R, Voytyuk O, Romanov V, Gordon R, Gebremeskel S, Vodsedalek J, Thompson C, Beletskaya I, Battaile KP, Pai EF, Rottapel R, Chirgadze NY. Qiu W, et al. Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2740-53. doi: 10.1107/S1399004714017660. Epub 2014 Sep 27. Acta Crystallogr D Biol Crystallogr. 2014. PMID: 25286857 Free PMC article. - Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.
Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, Moche M, Cohen MS, Schüler H. Thorsell AG, et al. J Med Chem. 2017 Feb 23;60(4):1262-1271. doi: 10.1021/acs.jmedchem.6b00990. Epub 2016 Dec 21. J Med Chem. 2017. PMID: 28001384 Free PMC article. - Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions.
Kirubakaran P, Kothandan G, Cho SJ, Muthusamy K. Kirubakaran P, et al. Mol Biosyst. 2014 Feb;10(2):281-93. doi: 10.1039/c3mb70305c. Mol Biosyst. 2014. PMID: 24291818 - Insights of tankyrases: A novel target for drug discovery.
Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB, Sangshetti JN. Damale MG, et al. Eur J Med Chem. 2020 Dec 1;207:112712. doi: 10.1016/j.ejmech.2020.112712. Epub 2020 Aug 17. Eur J Med Chem. 2020. PMID: 32877803 Review. - Poly (ADP-Ribose) Polymerases (PARPs) and PARP Inhibitor-Targeted Therapeutics.
Li N, Wang Y, Deng W, Lin SH. Li N, et al. Anticancer Agents Med Chem. 2019;19(2):206-212. doi: 10.2174/1871520618666181109164645. Anticancer Agents Med Chem. 2019. PMID: 30417796 Review.
Cited by
- The level of Ets-1 protein is regulated by poly(ADP-ribose) polymerase-1 (PARP-1) in cancer cells to prevent DNA damage.
Legrand AJ, Choul-Li S, Spriet C, Idziorek T, Vicogne D, Drobecq H, Dantzer F, Villeret V, Aumercier M. Legrand AJ, et al. PLoS One. 2013;8(2):e55883. doi: 10.1371/journal.pone.0055883. Epub 2013 Feb 6. PLoS One. 2013. PMID: 23405229 Free PMC article. - Non-NAD-Like poly(ADP-Ribose) Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo.
Thomas C, Ji Y, Lodhi N, Kotova E, Pinnola AD, Golovine K, Makhov P, Pechenkina K, Kolenko V, Tulin AV. Thomas C, et al. EBioMedicine. 2016 Nov;13:90-98. doi: 10.1016/j.ebiom.2016.10.001. Epub 2016 Oct 4. EBioMedicine. 2016. PMID: 27727003 Free PMC article. - Tankyrase-targeted therapeutics: expanding opportunities in the PARP family.
Riffell JL, Lord CJ, Ashworth A. Riffell JL, et al. Nat Rev Drug Discov. 2012 Dec;11(12):923-36. doi: 10.1038/nrd3868. Nat Rev Drug Discov. 2012. PMID: 23197039 Review. - Two-photon Fluorescence Anisotropy Microscopy for Imaging and Direct Measurement of Intracellular Drug Target Engagement.
Vinegoni C, Dubach JM, Feruglio PF, Weissleder R. Vinegoni C, et al. IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3):6801607. doi: 10.1109/JSTQE.2015.2501384. Epub 2016 Mar 10. IEEE J Sel Top Quantum Electron. 2016. PMID: 27440991 Free PMC article. - Clinical Pharmacokinetics and Pharmacodynamics of Rucaparib.
Liao M, Beltman J, Giordano H, Harding TC, Maloney L, Simmons AD, Xiao JJ. Liao M, et al. Clin Pharmacokinet. 2022 Nov;61(11):1477-1493. doi: 10.1007/s40262-022-01157-8. Epub 2022 Sep 15. Clin Pharmacokinet. 2022. PMID: 36107395 Free PMC article. Review.
References
- Expert Opin Ther Pat. 2009 Oct;19(10):1377-400 - PubMed
- J Pharmacol Exp Ther. 2009 Apr;329(1):150-8 - PubMed
- J Natl Cancer Inst. 2004 Jan 7;96(1):56-67 - PubMed
- J Pharmacol Exp Ther. 2003 Jun;305(3):943-9 - PubMed
- J Med Chem. 2009 May 14;52(9):3108-11 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases