The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships - PubMed (original) (raw)
The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships
Erik M van Mulligen et al. J Biomed Inform. 2012 Oct.
Free article
Abstract
Corpora with specific entities and relationships annotated are essential to train and evaluate text-mining systems that are developed to extract specific structured information from a large corpus. In this paper we describe an approach where a named-entity recognition system produces a first annotation and annotators revise this annotation using a web-based interface. The agreement figures achieved show that the inter-annotator agreement is much better than the agreement with the system provided annotations. The corpus has been annotated for drugs, disorders, genes and their inter-relationships. For each of the drug-disorder, drug-target, and target-disorder relations three experts have annotated a set of 100 abstracts. These annotated relationships will be used to train and evaluate text-mining software to capture these relationships in texts.
Copyright © 2012 Elsevier Inc. All rights reserved.
Similar articles
- On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.
Oronoz M, Gojenola K, Pérez A, de Ilarraza AD, Casillas A. Oronoz M, et al. J Biomed Inform. 2015 Aug;56:318-32. doi: 10.1016/j.jbi.2015.06.016. Epub 2015 Jun 30. J Biomed Inform. 2015. PMID: 26141794 - Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study.
Skeppstedt M, Kvist M, Nilsson GH, Dalianis H. Skeppstedt M, et al. J Biomed Inform. 2014 Jun;49:148-58. doi: 10.1016/j.jbi.2014.01.012. Epub 2014 Feb 4. J Biomed Inform. 2014. PMID: 24508177 - BioCreative V CDR task corpus: a resource for chemical disease relation extraction.
Li J, Sun Y, Johnson RJ, Sciaky D, Wei CH, Leaman R, Davis AP, Mattingly CJ, Wiegers TC, Lu Z. Li J, et al. Database (Oxford). 2016 May 9;2016:baw068. doi: 10.1093/database/baw068. Print 2016. Database (Oxford). 2016. PMID: 27161011 Free PMC article. - Analysis of biological processes and diseases using text mining approaches.
Krallinger M, Leitner F, Valencia A. Krallinger M, et al. Methods Mol Biol. 2010;593:341-82. doi: 10.1007/978-1-60327-194-3_16. Methods Mol Biol. 2010. PMID: 19957157 Review. - A text-mining perspective on the requirements for electronically annotated abstracts.
Leitner F, Valencia A. Leitner F, et al. FEBS Lett. 2008 Apr 9;582(8):1178-81. doi: 10.1016/j.febslet.2008.02.072. Epub 2008 Mar 6. FEBS Lett. 2008. PMID: 18328824 Review.
Cited by
- Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks.
Madan S, Kühnel L, Fröhlich H, Hofmann-Apitius M, Fluck J. Madan S, et al. Database (Oxford). 2024 Aug 5;2024:baae066. doi: 10.1093/database/baae066. Database (Oxford). 2024. PMID: 39104284 Free PMC article. - Large Language Models and Genomics for Summarizing the Role of microRNA in Regulating mRNA Expression.
Bhasuran B, Manoharan S, Iyyappan OR, Murugesan G, Prabahar A, Raja K. Bhasuran B, et al. Biomedicines. 2024 Jul 10;12(7):1535. doi: 10.3390/biomedicines12071535. Biomedicines. 2024. PMID: 39062108 Free PMC article. - A Study of Biomedical Relation Extraction Using GPT Models.
Zhang J, Wibert M, Zhou H, Peng X, Chen Q, Keloth VK, Hu Y, Zhang R, Xu H, Raja K. Zhang J, et al. AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:391-400. eCollection 2024. AMIA Jt Summits Transl Sci Proc. 2024. PMID: 38827097 Free PMC article. - An in-depth evaluation of federated learning on biomedical natural language processing for information extraction.
Peng L, Luo G, Zhou S, Chen J, Xu Z, Sun J, Zhang R. Peng L, et al. NPJ Digit Med. 2024 May 15;7(1):127. doi: 10.1038/s41746-024-01126-4. NPJ Digit Med. 2024. PMID: 38750290 Free PMC article. - Surveying biomedical relation extraction: a critical examination of current datasets and the proposal of a new resource.
Huang MS, Han JC, Lin PY, You YT, Tsai RT, Hsu WL. Huang MS, et al. Brief Bioinform. 2024 Mar 27;25(3):bbae132. doi: 10.1093/bib/bbae132. Brief Bioinform. 2024. PMID: 38609331 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials