The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships - PubMed (original) (raw)
The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships
Erik M van Mulligen et al. J Biomed Inform. 2012 Oct.
Free article
Abstract
Corpora with specific entities and relationships annotated are essential to train and evaluate text-mining systems that are developed to extract specific structured information from a large corpus. In this paper we describe an approach where a named-entity recognition system produces a first annotation and annotators revise this annotation using a web-based interface. The agreement figures achieved show that the inter-annotator agreement is much better than the agreement with the system provided annotations. The corpus has been annotated for drugs, disorders, genes and their inter-relationships. For each of the drug-disorder, drug-target, and target-disorder relations three experts have annotated a set of 100 abstracts. These annotated relationships will be used to train and evaluate text-mining software to capture these relationships in texts.
Copyright © 2012 Elsevier Inc. All rights reserved.
Similar articles
- On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.
Oronoz M, Gojenola K, Pérez A, de Ilarraza AD, Casillas A. Oronoz M, et al. J Biomed Inform. 2015 Aug;56:318-32. doi: 10.1016/j.jbi.2015.06.016. Epub 2015 Jun 30. J Biomed Inform. 2015. PMID: 26141794 - Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study.
Skeppstedt M, Kvist M, Nilsson GH, Dalianis H. Skeppstedt M, et al. J Biomed Inform. 2014 Jun;49:148-58. doi: 10.1016/j.jbi.2014.01.012. Epub 2014 Feb 4. J Biomed Inform. 2014. PMID: 24508177 - BioCreative V CDR task corpus: a resource for chemical disease relation extraction.
Li J, Sun Y, Johnson RJ, Sciaky D, Wei CH, Leaman R, Davis AP, Mattingly CJ, Wiegers TC, Lu Z. Li J, et al. Database (Oxford). 2016 May 9;2016:baw068. doi: 10.1093/database/baw068. Print 2016. Database (Oxford). 2016. PMID: 27161011 Free PMC article. - Analysis of biological processes and diseases using text mining approaches.
Krallinger M, Leitner F, Valencia A. Krallinger M, et al. Methods Mol Biol. 2010;593:341-82. doi: 10.1007/978-1-60327-194-3_16. Methods Mol Biol. 2010. PMID: 19957157 Review. - A text-mining perspective on the requirements for electronically annotated abstracts.
Leitner F, Valencia A. Leitner F, et al. FEBS Lett. 2008 Apr 9;582(8):1178-81. doi: 10.1016/j.febslet.2008.02.072. Epub 2008 Mar 6. FEBS Lett. 2008. PMID: 18328824 Review.
Cited by
- Identification of research hypotheses and new knowledge from scientific literature.
Shardlow M, Batista-Navarro R, Thompson P, Nawaz R, McNaught J, Ananiadou S. Shardlow M, et al. BMC Med Inform Decis Mak. 2018 Jun 25;18(1):46. doi: 10.1186/s12911-018-0639-1. BMC Med Inform Decis Mak. 2018. PMID: 29940927 Free PMC article. - Knowledge Discovery from Posts in Online Health Communities Using Unified Medical Language System.
Chen D, Zhang R, Liu K, Hou L. Chen D, et al. Int J Environ Res Public Health. 2018 Jun 19;15(6):1291. doi: 10.3390/ijerph15061291. Int J Environ Res Public Health. 2018. PMID: 29921824 Free PMC article. - Leveraging Food and Drug Administration Adverse Event Reports for the Automated Monitoring of Electronic Health Records in a Pediatric Hospital.
Tang H, Solti I, Kirkendall E, Zhai H, Lingren T, Meller J, Ni Y. Tang H, et al. Biomed Inform Insights. 2017 Jun 8;9:1178222617713018. doi: 10.1177/1178222617713018. eCollection 2017. Biomed Inform Insights. 2017. PMID: 28634427 Free PMC article. - Extraction of potential adverse drug events from medical case reports.
Gurulingappa H, Mateen-Rajput A, Toldo L. Gurulingappa H, et al. J Biomed Semantics. 2012 Dec 20;3(1):15. doi: 10.1186/2041-1480-3-15. J Biomed Semantics. 2012. PMID: 23256479 Free PMC article. - RCorp: a resource for chemical disease semantic extraction in Chinese.
Sun Y, Hou L, Qin L, Liu Y, Li J, Qian Q. Sun Y, et al. BMC Med Inform Decis Mak. 2019 Dec 5;19(Suppl 5):234. doi: 10.1186/s12911-019-0936-3. BMC Med Inform Decis Mak. 2019. PMID: 31801523 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials