Chromatin organization is a major influence on regional mutation rates in human cancer cells - PubMed (original) (raw)
. 2012 Aug 23;488(7412):504-7.
doi: 10.1038/nature11273.
Affiliations
- PMID: 22820252
- DOI: 10.1038/nature11273
Chromatin organization is a major influence on regional mutation rates in human cancer cells
Benjamin Schuster-Böckler et al. Nature. 2012.
Abstract
Cancer genome sequencing provides the first direct information on how mutation rates vary across the human genome in somatic cells. Testing diverse genetic and epigenetic features, here we show that mutation rates in cancer genomes are strikingly related to chromatin organization. Indeed, at the megabase scale, a single feature—levels of the heterochromatin-associated histone modification H3K9me3—can account for more than 40% of mutation-rate variation, and a combination of features can account for more than 55%. The strong association between mutation rates and chromatin organization is upheld in samples from different tissues and for different mutation types. This suggests that the arrangement of the genome into heterochromatin- and euchromatin-like domains is a dominant influence on regional mutation-rate variation in human somatic cells.
Comment in
- Cancer genomics: chromatin influence on cancer mutation rate.
Jones B. Jones B. Nat Rev Genet. 2012 Sep;13(9):596-7. doi: 10.1038/nrg3312. Epub 2012 Aug 7. Nat Rev Genet. 2012. PMID: 22868262 No abstract available.
Similar articles
- Differential DNA mismatch repair underlies mutation rate variation across the human genome.
Supek F, Lehner B. Supek F, et al. Nature. 2015 May 7;521(7550):81-4. doi: 10.1038/nature14173. Epub 2015 Feb 23. Nature. 2015. PMID: 25707793 Free PMC article. - Mapping of the juxtacentromeric heterochromatin-euchromatin frontier of human chromosome 21.
Grunau C, Buard J, Brun ME, De Sario A. Grunau C, et al. Genome Res. 2006 Oct;16(10):1198-207. doi: 10.1101/gr.5440306. Epub 2006 Sep 8. Genome Res. 2006. PMID: 16963709 Free PMC article. - RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome.
Li Q, Gent JI, Zynda G, Song J, Makarevitch I, Hirsch CD, Hirsch CN, Dawe RK, Madzima TF, McGinnis KM, Lisch D, Schmitz RJ, Vaughn MW, Springer NM. Li Q, et al. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14728-33. doi: 10.1073/pnas.1514680112. Epub 2015 Nov 9. Proc Natl Acad Sci U S A. 2015. PMID: 26553984 Free PMC article. - Histone modification and the control of heterochromatic gene silencing in Drosophila.
Ebert A, Lein S, Schotta G, Reuter G. Ebert A, et al. Chromosome Res. 2006;14(4):377-92. doi: 10.1007/s10577-006-1066-1. Chromosome Res. 2006. PMID: 16821134 Review. - Acetylation of yeast histone H4 lysine 16: a switch for protein interactions in heterochromatin and euchromatin.
Millar CB, Kurdistani SK, Grunstein M. Millar CB, et al. Cold Spring Harb Symp Quant Biol. 2004;69:193-200. doi: 10.1101/sqb.2004.69.193. Cold Spring Harb Symp Quant Biol. 2004. PMID: 16117649 Review. No abstract available.
Cited by
- Effects of replication domains on genome-wide UV-induced DNA damage and repair.
Huang Y, Azgari C, Yin M, Chiou YY, Lindsey-Boltz LA, Sancar A, Hu J, Adebali O. Huang Y, et al. PLoS Genet. 2022 Sep 26;18(9):e1010426. doi: 10.1371/journal.pgen.1010426. eCollection 2022 Sep. PLoS Genet. 2022. PMID: 36155646 Free PMC article. - Functional annotation of noncoding variants and prioritization of cancer-associated lncRNAs in lung cancer.
Li H, Lv X. Li H, et al. Oncol Lett. 2016 Jul;12(1):222-230. doi: 10.3892/ol.2016.4604. Epub 2016 May 18. Oncol Lett. 2016. PMID: 27347129 Free PMC article. - Sources of contradictions in the evaluation of population genetic consequences after the chernobyl disaster.
Glazko VI, Glazko TT. Glazko VI, et al. Acta Naturae. 2013 Jan;5(1):47-62. Acta Naturae. 2013. PMID: 23556130 Free PMC article. - miR-151-5p, targeting chromatin remodeler SMARCA5, as a marker for the BRCAness phenotype.
Tommasi S, Pinto R, Danza K, Pilato B, Palumbo O, Micale L, De Summa S. Tommasi S, et al. Oncotarget. 2016 Dec 6;7(49):80363-80372. doi: 10.18632/oncotarget.10345. Oncotarget. 2016. PMID: 27385001 Free PMC article. - CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage.
Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L. Magni M, et al. Oncotarget. 2015 Jul 10;6(19):17817-31. doi: 10.18632/oncotarget.4417. Oncotarget. 2015. PMID: 26158765 Free PMC article.
References
- Science. 2009 Oct 9;326(5950):289-93 - PubMed
- Nature. 2010 Jan 14;463(7278):191-6 - PubMed
- Nature. 1989 Jan 19;337(6204):283-5 - PubMed
- Nat Genet. 2009 Apr;41(4):393-5 - PubMed
- Nature. 2011 Oct 12;478(7370):476-82 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources