Avian magnetic compass can be tuned to anomalously low magnetic intensities - PubMed (original) (raw)
Avian magnetic compass can be tuned to anomalously low magnetic intensities
Michael Winklhofer et al. Proc Biol Sci. 2013.
Abstract
The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.
Keywords: ability to adjust; functional window; magnetic compass; radical-pair mechanism; radiofrequency fields.
Figures
Figure 1.
Orientation of European robins during spring migration in the local geomagnetic field (control, C) and, after pre-exposure, in the 4 µT field (4 µT), in this field with a radiofrequency field of 1.315 MHz, 480 nT added (4 µTRF), and with the skin of the upper beak locally anaesthetized by Xylocaine (4 µTXy). The triangles at the periphery of the circle mark the mean headings of the individual birds, the arrows represent the grand mean vector in relation to the radius of the circle = 1, and the two inner circles are the 5% (dashed) and the 1% border of the Rayleigh test [22].
Figure 2.
Orientation of robins in autumn in the local geomagnetic field (control, C) and, after pre-exposure, in the 4 µT field (4 µT). Symbols as in figure 1.
Figure 3.
Orientation of robins in autumn tested in the 4 μT field after 8 h pre-exposure in the 4 μT field before each test. In the four diagrams, the triangles at the periphery of the circle indicate the individual headings of the 16 test birds during the 1st, 2nd, 3rd and 4th test. Symbols as in figure 1.
Similar articles
- Avian magnetic compass: fast adjustment to intensities outside the normal functional window.
Wiltschko W, Stapput K, Thalau P, Wiltschko R. Wiltschko W, et al. Naturwissenschaften. 2006 Jun;93(6):300-4. doi: 10.1007/s00114-006-0102-5. Epub 2006 Apr 4. Naturwissenschaften. 2006. PMID: 16586120 - Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field.
Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W. Thalau P, et al. Naturwissenschaften. 2005 Feb;92(2):86-90. doi: 10.1007/s00114-004-0595-8. Epub 2004 Dec 22. Naturwissenschaften. 2005. PMID: 15614508 - Magnetoreception in birds: the effect of radio-frequency fields.
Wiltschko R, Thalau P, Gehring D, Nießner C, Ritz T, Wiltschko W. Wiltschko R, et al. J R Soc Interface. 2015 Feb 6;12(103):20141103. doi: 10.1098/rsif.2014.1103. J R Soc Interface. 2015. PMID: 25540238 Free PMC article. - Directional orientation of birds by the magnetic field under different light conditions.
Wiltschko R, Stapput K, Thalau P, Wiltschko W. Wiltschko R, et al. J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S163-77. doi: 10.1098/rsif.2009.0367.focus. Epub 2009 Oct 28. J R Soc Interface. 2010. PMID: 19864263 Free PMC article. Review. - The magnetite-based receptors in the beak of birds and their role in avian navigation.
Wiltschko R, Wiltschko W. Wiltschko R, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Feb;199(2):89-98. doi: 10.1007/s00359-012-0769-3. Epub 2012 Oct 31. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013. PMID: 23111859 Free PMC article. Review.
Cited by
- Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
Nießner C, Winklhofer M. Nießner C, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Jul;203(6-7):499-507. doi: 10.1007/s00359-017-1189-1. Epub 2017 Jun 13. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017. PMID: 28612234 Free PMC article. - The Magnetic Compass of Birds: The Role of Cryptochrome.
Wiltschko R, Nießner C, Wiltschko W. Wiltschko R, et al. Front Physiol. 2021 May 19;12:667000. doi: 10.3389/fphys.2021.667000. eCollection 2021. Front Physiol. 2021. PMID: 34093230 Free PMC article. Review. - Bats respond to very weak magnetic fields.
Tian LX, Pan YX, Metzner W, Zhang JS, Zhang BF. Tian LX, et al. PLoS One. 2015 Apr 29;10(4):e0123205. doi: 10.1371/journal.pone.0123205. eCollection 2015. PLoS One. 2015. PMID: 25922944 Free PMC article. - Magnetoreception in birds.
Wiltschko R, Wiltschko W. Wiltschko R, et al. J R Soc Interface. 2019 Sep 27;16(158):20190295. doi: 10.1098/rsif.2019.0295. Epub 2019 Sep 4. J R Soc Interface. 2019. PMID: 31480921 Free PMC article. Review. - Why is it so difficult to study magnetic compass orientation in murine rodents?
Phillips J, Muheim R, Painter M, Raines J, Anderson C, Landler L, Dommer D, Raines A, Deutschlander M, Whitehead J, Fitzpatrick NE, Youmans P, Borland C, Sloan K, McKenna K. Phillips J, et al. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):197-212. doi: 10.1007/s00359-021-01532-z. Epub 2022 Jan 30. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022. PMID: 35094127 Review.
References
- Wiltschko W. 1968. Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z. Tierpsychol. 25, 536–558.10.1111/j.1439-0310.1968.tb00028.x (doi:10.1111/j.1439-0310.1968.tb00028.x) - DOI - DOI - PubMed
- Wiltschko W. 1974. Der Magnetkompaß der Gartengrasmücke (Sylvia borin). J. Ornithol. 115, 1–7.10.1007/BF01647313 (doi:10.1007/BF01647313) - DOI - DOI
- Wiltschko W, Freire R, Munro U, Ritz T, Rogers L, Thalau P, Wiltschko R. 2007. The magnetic compass of domestic chickens, Gallus gallus. J. Exp. Biol. 210, 2300–2310.10.1242/jeb.004853 (doi:10.1242/jeb.004853) - DOI - DOI - PubMed
- Wiltschko W. 1978. Further analysis of the magnetic compass of migratory birds. In Animal migration, navigation, and homing (eds Schmidt-Koenig K, Keeton WT.), pp. 302–310. Berlin, Germany: Springer.
- Finlay CC, et al. 2010. International geomagnetic reference field: the eleventh generation. Geophys. J. Int. 183, 1216–1230.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous