Computational models for neglected diseases: gaps and opportunities - PubMed (original) (raw)
Computational models for neglected diseases: gaps and opportunities
Elizabeth L Ponder et al. Pharm Res. 2014 Feb.
Abstract
Neglected diseases, such as Chagas disease, African sleeping sickness, and intestinal worms, affect millions of the world's poor. They disproportionately affect marginalized populations, lack effective treatments or vaccines, or existing products are not accessible to the populations affected. Computational approaches have been used across many of these diseases for various aspects of research or development, and yet data produced by computational approaches are not integrated and widely accessible to others. Here, we identify gaps in which computational approaches have been used for some neglected diseases and not others. We also make recommendations for the broad-spectrum integration of these techniques into a neglected disease drug discovery and development workflow.
Similar articles
- Drug discovery and development for neglected diseases: the DNDi model.
Chatelain E, Ioset JR. Chatelain E, et al. Drug Des Devel Ther. 2011 Mar 16;5:175-81. doi: 10.2147/DDDT.S16381. Drug Des Devel Ther. 2011. PMID: 21552487 Free PMC article. Review. - Machine learning and drug discovery for neglected tropical diseases.
Breslin W, Pham D. Breslin W, et al. BMC Bioinformatics. 2023 Apr 24;24(1):165. doi: 10.1186/s12859-022-05076-0. BMC Bioinformatics. 2023. PMID: 37095460 Free PMC article. - Artificial Neural Network Methods Applied to Drug Discovery for Neglected Diseases.
Scotti L, Ishiki H, Mendonça Júnior FJ, da Silva MS, Scotti MT. Scotti L, et al. Comb Chem High Throughput Screen. 2015;18(8):819-29. doi: 10.2174/1386207318666150803141219. Comb Chem High Throughput Screen. 2015. PMID: 26234510 Review. - Target-based molecular modeling strategies for schistosomiasis drug discovery.
Ferreira LG, Oliva G, Andricopulo AD. Ferreira LG, et al. Future Med Chem. 2015;7(6):753-64. doi: 10.4155/fmc.15.21. Future Med Chem. 2015. PMID: 25996068 - Teach-Discover-Treat (TDT): collaborative computational drug discovery for neglected diseases.
Jansen JM, Cornell W, Tseng YJ, Amaro RE. Jansen JM, et al. J Mol Graph Model. 2012 Sep;38:360-2. doi: 10.1016/j.jmgm.2012.07.007. Epub 2012 Aug 30. J Mol Graph Model. 2012. PMID: 23085175 Free PMC article.
Cited by
- The Next Era: Deep Learning in Pharmaceutical Research.
Ekins S. Ekins S. Pharm Res. 2016 Nov;33(11):2594-603. doi: 10.1007/s11095-016-2029-7. Epub 2016 Sep 6. Pharm Res. 2016. PMID: 27599991 Free PMC article. Review. - Fusing dual-event data sets for Mycobacterium tuberculosis machine learning models and their evaluation.
Ekins S, Freundlich JS, Reynolds RC. Ekins S, et al. J Chem Inf Model. 2013 Nov 25;53(11):3054-63. doi: 10.1021/ci400480s. Epub 2013 Oct 30. J Chem Inf Model. 2013. PMID: 24144044 Free PMC article. - Chemoinformatics Strategies for Leishmaniasis Drug Discovery.
Ferreira LLG, Andricopulo AD. Ferreira LLG, et al. Front Pharmacol. 2018 Nov 1;9:1278. doi: 10.3389/fphar.2018.01278. eCollection 2018. Front Pharmacol. 2018. PMID: 30443215 Free PMC article. Review. - Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery.
Ekins S, de Siqueira-Neto JL, McCall LI, Sarker M, Yadav M, Ponder EL, Kallel EA, Kellar D, Chen S, Arkin M, Bunin BA, McKerrow JH, Talcott C. Ekins S, et al. PLoS Negl Trop Dis. 2015 Jun 26;9(6):e0003878. doi: 10.1371/journal.pntd.0003878. eCollection 2015. PLoS Negl Trop Dis. 2015. PMID: 26114876 Free PMC article. - Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for Mycobacterium tuberculosis.
Ekins S, Freundlich JS, Reynolds RC. Ekins S, et al. J Chem Inf Model. 2014 Jul 28;54(7):2157-65. doi: 10.1021/ci500264r. Epub 2014 Jul 17. J Chem Inf Model. 2014. PMID: 24968215 Free PMC article.
References
- Nucleic Acids Res. 2012 Jan;40(Database issue):D1118-27 - PubMed
- PLoS One. 2011;6(11):e26960 - PubMed
- Chem Biol. 2013 Mar 21;20(3):370-8 - PubMed
- Tuberculosis (Edinb). 2009 Sep;89(5):334-53 - PubMed
- Tuberculosis (Edinb). 2010 Jul;90(4):225-35 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources