Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization - PubMed (original) (raw)
Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization
Ji-Hong Lim et al. Cancer Res. 2014.
Abstract
Metabolic targets offer attractive opportunities for cancer therapy. However, their targeting may activate alternative metabolic pathways that can still support tumor growth. A subset of human melanomas relies on PGC1α-dependent mitochondrial oxidative metabolism to maintain growth and survival. Herein, we show that loss of viability caused by suppression of PGC1α in these melanomas is rescued by induction of glycolysis. Suppression of PGC1α elevates reactive oxygen species levels decreasing hypoxia-inducible factor-1α (HIF1α) hydroxylation that, in turn, increases its protein stability. HIF1α reprograms melanomas to become highly glycolytic and dependent on this pathway for survival. Dual suppression of PGC1α and HIF1α causes energetic deficits and loss of viability that are partially compensated by glutamine utilization. Notably, triple suppression of PGC1α, HIF1α, and glutamine utilization results in complete blockage of tumor growth. These results show that due to high metabolic and bioenergetic flexibility, complete treatment of melanomas will require combinatorial therapy that targets multiple metabolic components.
©2014 American Association for Cancer Research.
Similar articles
- PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress.
Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, Clish CB, Granter SR, Widlund HR, Spiegelman BM, Puigserver P. Vazquez F, et al. Cancer Cell. 2013 Mar 18;23(3):287-301. doi: 10.1016/j.ccr.2012.11.020. Epub 2013 Feb 14. Cancer Cell. 2013. PMID: 23416000 Free PMC article. - Inactivation of the HIF-1α/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants.
Kluza J, Corazao-Rozas P, Touil Y, Jendoubi M, Maire C, Guerreschi P, Jonneaux A, Ballot C, Balayssac S, Valable S, Corroyer-Dulmont A, Bernaudin M, Malet-Martino M, de Lassalle EM, Maboudou P, Formstecher P, Polakowska R, Mortier L, Marchetti P. Kluza J, et al. Cancer Res. 2012 Oct 1;72(19):5035-47. doi: 10.1158/0008-5472.CAN-12-0979. Epub 2012 Aug 3. Cancer Res. 2012. PMID: 22865452 - A PGC1α-mediated transcriptional axis suppresses melanoma metastasis.
Luo C, Lim JH, Lee Y, Granter SR, Thomas A, Vazquez F, Widlund HR, Puigserver P. Luo C, et al. Nature. 2016 Sep 15;537(7620):422-426. doi: 10.1038/nature19347. Epub 2016 Aug 31. Nature. 2016. PMID: 27580028 Free PMC article. - PGC1α and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders.
Austin S, St-Pierre J. Austin S, et al. J Cell Sci. 2012 Nov 1;125(Pt 21):4963-71. doi: 10.1242/jcs.113662. J Cell Sci. 2012. PMID: 23277535 Review. - Metabolic phenotype of bladder cancer.
Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R, Tortora G, Lopez-Beltran A, Cheng L, Montironi R. Massari F, et al. Cancer Treat Rev. 2016 Apr;45:46-57. doi: 10.1016/j.ctrv.2016.03.005. Epub 2016 Mar 8. Cancer Treat Rev. 2016. PMID: 26975021 Review.
Cited by
- The Mitochondrion as an Emerging Therapeutic Target in Cancer.
Roth KG, Mambetsariev I, Kulkarni P, Salgia R. Roth KG, et al. Trends Mol Med. 2020 Jan;26(1):119-134. doi: 10.1016/j.molmed.2019.06.009. Epub 2019 Jul 18. Trends Mol Med. 2020. PMID: 31327706 Free PMC article. Review. - Inhibition of NAT10 Suppresses Melanogenesis and Melanoma Growth by Attenuating Microphthalmia-Associated Transcription Factor (MITF) Expression.
Oh TI, Lee YM, Lim BO, Lim JH. Oh TI, et al. Int J Mol Sci. 2017 Sep 7;18(9):1924. doi: 10.3390/ijms18091924. Int J Mol Sci. 2017. PMID: 28880216 Free PMC article. - ERRα Maintains Mitochondrial Oxidative Metabolism and Constitutes an Actionable Target in PGC1α-Elevated Melanomas.
Luo C, Balsa E, Thomas A, Hatting M, Jedrychowski M, Gygi SP, Widlund HR, Puigserver P. Luo C, et al. Mol Cancer Res. 2017 Oct;15(10):1366-1375. doi: 10.1158/1541-7786.MCR-17-0143. Epub 2017 Jun 8. Mol Cancer Res. 2017. PMID: 28596418 Free PMC article. - Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
Gentric G, Mieulet V, Mechta-Grigoriou F. Gentric G, et al. Antioxid Redox Signal. 2017 Mar 20;26(9):462-485. doi: 10.1089/ars.2016.6750. Epub 2016 Jul 13. Antioxid Redox Signal. 2017. PMID: 27228792 Free PMC article. Review. - Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma.
LaGory EL, Wu C, Taniguchi CM, Ding CC, Chi JT, von Eyben R, Scott DA, Richardson AD, Giaccia AJ. LaGory EL, et al. Cell Rep. 2015 Jul 7;12(1):116-127. doi: 10.1016/j.celrep.2015.06.006. Epub 2015 Jun 25. Cell Rep. 2015. PMID: 26119730 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical