Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids - PubMed (original) (raw)
doi: 10.1038/nm.3802. Epub 2015 Feb 23.
Affiliations
- PMID: 25706875
- DOI: 10.1038/nm.3802
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids
Mami Matano et al. Nat Med. 2015 Mar.
Abstract
Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.
Comment in
- Toward recreating colon cancer in human organoids.
Salahudeen AA, Kuo CJ. Salahudeen AA, et al. Nat Med. 2015 Mar;21(3):215-6. doi: 10.1038/nm.3818. Nat Med. 2015. PMID: 25742455 No abstract available.
Similar articles
- Chromosome Engineering of Human Colon-Derived Organoids to Develop a Model of Traditional Serrated Adenoma.
Kawasaki K, Fujii M, Sugimoto S, Ishikawa K, Matano M, Ohta Y, Toshimitsu K, Takahashi S, Hosoe N, Sekine S, Kanai T, Sato T. Kawasaki K, et al. Gastroenterology. 2020 Feb;158(3):638-651.e8. doi: 10.1053/j.gastro.2019.10.009. Epub 2019 Oct 14. Gastroenterology. 2020. PMID: 31622618 - Sequential cancer mutations in cultured human intestinal stem cells.
Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJ, Clevers H. Drost J, et al. Nature. 2015 May 7;521(7550):43-7. doi: 10.1038/nature14415. Epub 2015 Apr 29. Nature. 2015. PMID: 25924068 - CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes.
Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, Copeland NG, Oshima M. Takeda H, et al. Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15635-15644. doi: 10.1073/pnas.1904714116. Epub 2019 Jul 12. Proc Natl Acad Sci U S A. 2019. PMID: 31300537 Free PMC article. - Sequence of molecular genetic events in colorectal tumorigenesis.
Laurent-Puig P, Blons H, Cugnenc PH. Laurent-Puig P, et al. Eur J Cancer Prev. 1999 Dec;8 Suppl 1:S39-47. Eur J Cancer Prev. 1999. PMID: 10772417 Review. - RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.
Fang B. Fang B. Acta Biochim Biophys Sin (Shanghai). 2016 Jan;48(1):27-38. doi: 10.1093/abbs/gmv090. Epub 2015 Sep 7. Acta Biochim Biophys Sin (Shanghai). 2016. PMID: 26350096 Free PMC article. Review.
Cited by
- Genomic profiling of colorectal cancer with isolated lung metastasis.
Zhang N, Di J, Wang Z, Gao P, Jiang B, Su X. Zhang N, et al. Cancer Cell Int. 2020 Jul 1;20:281. doi: 10.1186/s12935-020-01373-x. eCollection 2020. Cancer Cell Int. 2020. PMID: 32624706 Free PMC article. - Engineering Heterogeneous Tumor Models for Biomedical Applications.
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Wu Z, et al. Adv Sci (Weinh). 2024 Jan;11(1):e2304160. doi: 10.1002/advs.202304160. Epub 2023 Nov 9. Adv Sci (Weinh). 2024. PMID: 37946674 Free PMC article. Review. - Cancer research using organoid technology.
Kretzschmar K. Kretzschmar K. J Mol Med (Berl). 2021 Apr;99(4):501-515. doi: 10.1007/s00109-020-01990-z. Epub 2020 Oct 14. J Mol Med (Berl). 2021. PMID: 33057820 Free PMC article. Review. - Investigating Tissue Mechanics in vitro Using Untethered Soft Robotic Microdevices.
Parreira R, Özelçi E, Sakar MS. Parreira R, et al. Front Robot AI. 2021 Mar 18;8:649765. doi: 10.3389/frobt.2021.649765. eCollection 2021. Front Robot AI. 2021. PMID: 33869296 Free PMC article. - Organoids and Colorectal Cancer.
Barbáchano A, Fernández-Barral A, Bustamante-Madrid P, Prieto I, Rodríguez-Salas N, Larriba MJ, Muñoz A. Barbáchano A, et al. Cancers (Basel). 2021 May 28;13(11):2657. doi: 10.3390/cancers13112657. Cancers (Basel). 2021. PMID: 34071313 Free PMC article. Review.
References
- Blood. 2002 Nov 1;100(9):3175-82 - PubMed
- Cancer Cell. 2013 Jul 8;24(1):15-29 - PubMed
- Cancer Res. 2000 Dec 15;60(24):6886-9 - PubMed
- Nat Biotechnol. 2014 Sep;32(9):941-6 - PubMed
- Science. 2013 Jun 7;340(6137):1190-4 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous