Xenacoelomorpha is the sister group to Nephrozoa - PubMed (original) (raw)
. 2016 Feb 4;530(7588):89-93.
doi: 10.1038/nature16520.
Affiliations
- PMID: 26842059
- DOI: 10.1038/nature16520
Xenacoelomorpha is the sister group to Nephrozoa
Johanna Taylor Cannon et al. Nature. 2016.
Abstract
The position of Xenacoelomorpha in the tree of life remains a major unresolved question in the study of deep animal relationships. Xenacoelomorpha, comprising Acoela, Nemertodermatida, and Xenoturbella, are bilaterally symmetrical marine worms that lack several features common to most other bilaterians, for example an anus, nephridia, and a circulatory system. Two conflicting hypotheses are under debate: Xenacoelomorpha is the sister group to all remaining Bilateria (= Nephrozoa, namely protostomes and deuterostomes) or is a clade inside Deuterostomia. Thus, determining the phylogenetic position of this clade is pivotal for understanding the early evolution of bilaterian features, or as a case of drastic secondary loss of complexity. Here we show robust phylogenomic support for Xenacoelomorpha as the sister taxon of Nephrozoa. Our phylogenetic analyses, based on 11 novel xenacoelomorph transcriptomes and using different models of evolution under maximum likelihood and Bayesian inference analyses, strongly corroborate this result. Rigorous testing of 25 experimental data sets designed to exclude data partitions and taxa potentially prone to reconstruction biases indicates that long-branch attraction, saturation, and missing data do not influence these results. The sister group relationship between Nephrozoa and Xenacoelomorpha supported by our phylogenomic analyses implies that the last common ancestor of bilaterians was probably a benthic, ciliated acoelomate worm with a single opening into an epithelial gut, and that excretory organs, coelomic cavities, and nerve cords evolved after xenacoelomorphs separated from the stem lineage of Nephrozoa.
Comment in
- Phylogeny: A home for Xenoturbella.
Gee H. Gee H. Nature. 2016 Feb 4;530(7588):43. doi: 10.1038/530043a. Nature. 2016. PMID: 26842053 No abstract available. - Zoology: War of the Worms.
Telford MJ, Copley RR. Telford MJ, et al. Curr Biol. 2016 Apr 25;26(8):R335-7. doi: 10.1016/j.cub.2016.03.015. Curr Biol. 2016. PMID: 27115693
Similar articles
- New deep-sea species of Xenoturbella and the position of Xenacoelomorpha.
Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC. Rouse GW, et al. Nature. 2016 Feb 4;530(7588):94-7. doi: 10.1038/nature16545. Nature. 2016. PMID: 26842060 - Acoelomorph flatworms are deuterostomes related to Xenoturbella.
Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ. Philippe H, et al. Nature. 2011 Feb 10;470(7333):255-8. doi: 10.1038/nature09676. Nature. 2011. PMID: 21307940 Free PMC article. - Insights into early animal evolution from the genome of the xenacoelomorph worm Xenoturbella bocki.
Schiffer PH, Natsidis P, Leite DJ, Robertson HE, Lapraz F, Marlétaz F, Fromm B, Baudry L, Simpson F, Høye E, Zakrzewski AC, Kapli P, Hoff KJ, Müller S, Marbouty M, Marlow H, Copley RR, Koszul R, Sarkies P, Telford MJ. Schiffer PH, et al. Elife. 2024 Aug 7;13:e94948. doi: 10.7554/eLife.94948. Elife. 2024. PMID: 39109482 Free PMC article. - Xenacoelomorpha's significance for understanding bilaterian evolution.
Hejnol A, Pang K. Hejnol A, et al. Curr Opin Genet Dev. 2016 Aug;39:48-54. doi: 10.1016/j.gde.2016.05.019. Epub 2016 Jun 17. Curr Opin Genet Dev. 2016. PMID: 27322587 Review. - The digestive system of xenacoelomorphs.
Gavilán B, Sprecher SG, Hartenstein V, Martinez P. Gavilán B, et al. Cell Tissue Res. 2019 Sep;377(3):369-382. doi: 10.1007/s00441-019-03038-2. Epub 2019 May 16. Cell Tissue Res. 2019. PMID: 31093756 Review.
Cited by
- Discovery of deep-sea acoels from a chemosynthesis-based ecosystem.
Hookabe N, Jimi N, Furushima Y, Fujiwara Y. Hookabe N, et al. Biol Lett. 2024 Jul;20(7):20230573. doi: 10.1098/rsbl.2023.0573. Epub 2024 Jul 31. Biol Lett. 2024. PMID: 39079676 - Exploring genome gene content and morphological analysis to test recalcitrant nodes in the animal phylogeny.
Juravel K, Porras L, Höhna S, Pisani D, Wörheide G. Juravel K, et al. PLoS One. 2023 Mar 23;18(3):e0282444. doi: 10.1371/journal.pone.0282444. eCollection 2023. PLoS One. 2023. PMID: 36952565 Free PMC article. - Acid-sensing ion channels emerged over 600 Mya and are conserved throughout the deuterostomes.
Lynagh T, Mikhaleva Y, Colding JM, Glover JC, Pless SA. Lynagh T, et al. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8430-8435. doi: 10.1073/pnas.1806614115. Epub 2018 Jul 30. Proc Natl Acad Sci U S A. 2018. PMID: 30061402 Free PMC article. - Phylogenetics Identifies Two Eumetazoan TRPM Clades and an Eighth TRP Family, TRP Soromelastatin (TRPS).
Himmel NJ, Gray TR, Cox DN. Himmel NJ, et al. Mol Biol Evol. 2020 Jul 1;37(7):2034-2044. doi: 10.1093/molbev/msaa065. Mol Biol Evol. 2020. PMID: 32159767 Free PMC article. - Nemertean, Brachiopod, and Phoronid Neuropeptidomics Reveals Ancestral Spiralian Signaling Systems.
Thiel D, Yañez-Guerra LA, Franz-Wachtel M, Hejnol A, Jékely G. Thiel D, et al. Mol Biol Evol. 2021 Oct 27;38(11):4847-4866. doi: 10.1093/molbev/msab211. Mol Biol Evol. 2021. PMID: 34272863 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources