Xenacoelomorpha is the sister group to Nephrozoa (original) (raw)
References
Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst.45, 371–395 (2014) Article Google Scholar
Hejnol, A. et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. B276, 4261–4270 (2009) ArticlePubMedPubMed Central Google Scholar
Srivastava, M., Mazza-Curll, K. L., van Wolfswinkel, J. C. & Reddien, P. W. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr. Biol.24, 1107–1113 (2014) ArticleCASPubMed Google Scholar
Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla (Oxford Univ. Press, 2012)
Ehlers, U. Das phylogenetische System der Plathelminthes (G. Fischer, 1985)
Smith, J. P. S., III, Tyler, S. & Rieger, R. M. Is the Turbellaria polyphyletic? Hydrobiologia132, 13–21 (1986) Article Google Scholar
Haszprunar, G. Plathelminthes and Plathelminthomorpha — paraphyletic taxa. J. Zool. Syst. Evol. Res.34, 41–48 (1996) Article Google Scholar
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A. & Baguña, J. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science283, 1919–1923 (1999) ArticleADSCASPubMed Google Scholar
Steinböck, O. Ergebnisse einer von E. Reisinger & O. Steinböck mit Hilfe des Rask-Örsted fonds durchgefuhrten Reise in Grönland 1926. 2. Nemertoderma bathycola nov. gen. nov. spec., eine eigenartige Turbellarie aus der Tiefe der Diskobay: nebst einem Beitrag zur Kenntnis des Nemertinenepithels. Vidensk. Medd. Dan. Naturhist. Foren.90, 47–84 (1930) Google Scholar
Paps, J., Baguñà, J. & Riutort, M. Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal acoelomorpha. Mol. Biol. Evol.26, 2397–2406 (2009) ArticleCASPubMed Google Scholar
Jondelius, U., Ruiz-Trillo, I., Baguñà, J. & Riutort, M. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool. Scr.31, 201–215 (2002) Article Google Scholar
Westblad, E. Xenoturbella bocki n.g, n.sp, a peculiar, primitive turbellarian type. Ark. Zool.1, 3–29 (1949) Google Scholar
Franzén, Å. & Afzelius, B. A. The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool. Scr.16, 9–17 (1987) Article Google Scholar
Ehlers, U. & Sopott-Ehlers, B. Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology117, 71–79 (1997) Article Google Scholar
Norén, M. & Jondelius, U. _Xenoturbella_’s molluscan relatives…. Nature390, 31–32 (1997) ArticleADS Google Scholar
Bourlat, S. J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature444, 85–88 (2006) ArticleADSCASPubMed Google Scholar
Bourlat, S. J., Rota-Stabelli, O., Lanfear, R. & Telford, M. J. The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evol. Biol.9, 107 (2009) Google Scholar
Mwinyi, A. et al. The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol. Biol.10, 309 (2010) Google Scholar
Ruiz-Trillo, I., Riutort, M., Fourcade, H. M., Baguñà, J. & Boore, J. L. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol. Phylogenet. Evol.33, 321–332 (2004) ArticleCASPubMed Google Scholar
Rouse, G., Wilson, N. G., Carvajal, J. I. & Vrijenhoek, R. C. New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Naturehttp://dx.doi.org/10.1038/nature16545 (this issue)
Thomson, R. C., Plachetzki, D. C., Mahler, D. L. & Moore, B. R. A critical appraisal of the use of microRNA data in phylogenetics. Proc. Natl Acad. Sci. USA111, E3659–E3668 (2014) ArticleADSCASPubMedPubMed Central Google Scholar
Jondelius, U., Wallberg, A., Hooge, M. & Raikova, O. I. How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Syst. Biol.60, 845–871 (2011) ArticlePubMed Google Scholar
Le, S. Q., Dang, C. C. & Gascuel, O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol.29, 2921–2936 (2012) ArticleCASPubMed Google Scholar
Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature452, 745–749 (2008) ArticleADSCASPubMed Google Scholar
Bleidorn, C. et al. On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evol. Biol.9, 150 (2009) Google Scholar
Whelan, N. V., Kocot, K. M., Moroz, L. L. & Halanych, K. M. Error, signal, and the placement of Ctenophora sister to all other animals. Proc. Natl Acad. Sci. USA112, 5773–5778 (2015) ArticleADSCASPubMedPubMed Central Google Scholar
Hejnol, A. & Martindale, M. Q. Acoel development supports a simple planula-like urbilaterian. Phil. Trans. R. Soc. B363, 1493–1501 (2008) ArticlePubMedPubMed Central Google Scholar
Laumer, C. E. et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol.25, 2000–2006 (2015) ArticleCASPubMed Google Scholar
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol.29, 644–652 (2011) ArticleCAS Google Scholar
Ebersberger, I., Strauss, S. & von Haeseler, A. HaMStR: profile hidden markov model based search for orthologs in ESTs. BMC Evol. Biol.9, 157 (2009) ArticlePubMedPubMed CentralCAS Google Scholar
Cannon, J. T. et al. Phylogenomic resolution of the hemichordate and echinoderm clade. Curr. Biol.24, 2827–2832 (2014) ArticleCASPubMed Google Scholar
Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res.33, 511–518 (2005) ArticleCASPubMedPubMed Central Google Scholar
Misof, B. & Misof, K. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst. Biol.58, 21–34 (2009) ArticleCASPubMed Google Scholar
Price, M. N., Dehal, P. S. & Arkin, A. P . FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010)
Kocot, K. M., Citarella, M. R., Moroz, L. L. & Halanych, K. M. PhyloTreePruner: a phylogenetic tree-based approach for selection of orthologous sequences for phylogenomics. Evol. Bioinform. Online9, 429–435 (2013) ArticleCASPubMedPubMed Central Google Scholar
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet.16, 276–277 (2000) ArticleCASPubMed Google Scholar
Struck, T. H. TreSpEx-Detection of misleading signal in phylogenetic reconstructions based on tree information. Evol. Bioinform. Online10, 51–67 (2014) ArticlePubMedPubMed Central Google Scholar
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol.10, 210 (2010) ArticlePubMedPubMed CentralCAS Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014) ArticleCASPubMedPubMed Central Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics27, 1164–1165 (2011) ArticleCASPubMed Google Scholar
Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol.62, 611–615 (2013) ArticleCASPubMed Google Scholar
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol.61, 539–542 (2012) ArticlePubMedPubMed Central Google Scholar