Xenacoelomorpha is the sister group to Nephrozoa (original) (raw)

References

  1. Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45, 371–395 (2014)
    Article Google Scholar
  2. Hejnol, A. et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. B 276, 4261–4270 (2009)
    Article PubMed PubMed Central Google Scholar
  3. Srivastava, M., Mazza-Curll, K. L., van Wolfswinkel, J. C. & Reddien, P. W. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr. Biol. 24, 1107–1113 (2014)
    Article CAS PubMed Google Scholar
  4. Philippe, H. et al. Acoelomorph flatworms are deuterostomes related to Xenoturbella . Nature 470, 255–258 (2011)
    Article ADS CAS PubMed PubMed Central Google Scholar
  5. Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla (Oxford Univ. Press, 2012)
  6. Ehlers, U. Das phylogenetische System der Plathelminthes (G. Fischer, 1985)
  7. Smith, J. P. S., III, Tyler, S. & Rieger, R. M. Is the Turbellaria polyphyletic? Hydrobiologia 132, 13–21 (1986)
    Article Google Scholar
  8. Haszprunar, G. Plathelminthes and Plathelminthomorpha — paraphyletic taxa. J. Zool. Syst. Evol. Res. 34, 41–48 (1996)
    Article Google Scholar
  9. Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A. & Baguña, J. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283, 1919–1923 (1999)
    Article ADS CAS PubMed Google Scholar
  10. Steinböck, O. Ergebnisse einer von E. Reisinger & O. Steinböck mit Hilfe des Rask-Örsted fonds durchgefuhrten Reise in Grönland 1926. 2. Nemertoderma bathycola nov. gen. nov. spec., eine eigenartige Turbellarie aus der Tiefe der Diskobay: nebst einem Beitrag zur Kenntnis des Nemertinenepithels. Vidensk. Medd. Dan. Naturhist. Foren. 90, 47–84 (1930)
    Google Scholar
  11. Paps, J., Baguñà, J. & Riutort, M. Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal acoelomorpha. Mol. Biol. Evol. 26, 2397–2406 (2009)
    Article CAS PubMed Google Scholar
  12. Jondelius, U., Ruiz-Trillo, I., Baguñà, J. & Riutort, M. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool. Scr. 31, 201–215 (2002)
    Article Google Scholar
  13. Westblad, E. Xenoturbella bocki n.g, n.sp, a peculiar, primitive turbellarian type. Ark. Zool. 1, 3–29 (1949)
    Google Scholar
  14. Franzén, Å. & Afzelius, B. A. The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool. Scr. 16, 9–17 (1987)
    Article Google Scholar
  15. Ehlers, U. & Sopott-Ehlers, B. Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology 117, 71–79 (1997)
    Article Google Scholar
  16. Norén, M. & Jondelius, U. _Xenoturbella_’s molluscan relatives…. Nature 390, 31–32 (1997)
    Article ADS Google Scholar
  17. Bourlat, S. J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88 (2006)
    Article ADS CAS PubMed Google Scholar
  18. Bourlat, S. J., Rota-Stabelli, O., Lanfear, R. & Telford, M. J. The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evol. Biol. 9, 107 (2009)
    Google Scholar
  19. Mwinyi, A. et al. The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol. Biol. 10, 309 (2010)
    Google Scholar
  20. Ruiz-Trillo, I., Riutort, M., Fourcade, H. M., Baguñà, J. & Boore, J. L. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol. Phylogenet. Evol. 33, 321–332 (2004)
    Article CAS PubMed Google Scholar
  21. Rouse, G., Wilson, N. G., Carvajal, J. I. & Vrijenhoek, R. C. New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature http://dx.doi.org/10.1038/nature16545 (this issue)
  22. Thomson, R. C., Plachetzki, D. C., Mahler, D. L. & Moore, B. R. A critical appraisal of the use of microRNA data in phylogenetics. Proc. Natl Acad. Sci. USA 111, E3659–E3668 (2014)
    Article ADS CAS PubMed PubMed Central Google Scholar
  23. Jondelius, U., Wallberg, A., Hooge, M. & Raikova, O. I. How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Syst. Biol. 60, 845–871 (2011)
    Article PubMed Google Scholar
  24. Le, S. Q., Dang, C. C. & Gascuel, O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol. 29, 2921–2936 (2012)
    Article CAS PubMed Google Scholar
  25. Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008)
    Article ADS CAS PubMed Google Scholar
  26. Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541–i548 (2014)
    Article CAS PubMed PubMed Central Google Scholar
  27. Bleidorn, C. et al. On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evol. Biol. 9, 150 (2009)
    Google Scholar
  28. Whelan, N. V., Kocot, K. M., Moroz, L. L. & Halanych, K. M. Error, signal, and the placement of Ctenophora sister to all other animals. Proc. Natl Acad. Sci. USA 112, 5773–5778 (2015)
    Article ADS CAS PubMed PubMed Central Google Scholar
  29. Hejnol, A. & Martindale, M. Q. Acoel development supports a simple planula-like urbilaterian. Phil. Trans. R. Soc. B 363, 1493–1501 (2008)
    Article PubMed PubMed Central Google Scholar
  30. Laumer, C. E. et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol. 25, 2000–2006 (2015)
    Article CAS PubMed Google Scholar
  31. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol. 29, 644–652 (2011)
    Article CAS Google Scholar
  32. Ebersberger, I., Strauss, S. & von Haeseler, A. HaMStR: profile hidden markov model based search for orthologs in ESTs. BMC Evol. Biol. 9, 157 (2009)
    Article PubMed PubMed Central CAS Google Scholar
  33. Lechner, M. et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011)
    Article PubMed PubMed Central Google Scholar
  34. Kocot, K. M. et al. Phylogenomics reveals deep molluscan relationships. Nature 477, 452–456 (2011)
    Article ADS CAS PubMed PubMed Central Google Scholar
  35. Cannon, J. T. et al. Phylogenomic resolution of the hemichordate and echinoderm clade. Curr. Biol. 24, 2827–2832 (2014)
    Article CAS PubMed Google Scholar
  36. Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  37. Misof, B. & Misof, K. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst. Biol. 58, 21–34 (2009)
    Article CAS PubMed Google Scholar
  38. Price, M. N., Dehal, P. S. & Arkin, A. P . FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010)
  39. Kocot, K. M., Citarella, M. R., Moroz, L. L. & Halanych, K. M. PhyloTreePruner: a phylogenetic tree-based approach for selection of orthologous sequences for phylogenomics. Evol. Bioinform. Online 9, 429–435 (2013)
    Article CAS PubMed PubMed Central Google Scholar
  40. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000)
    Article CAS PubMed Google Scholar
  41. Struck, T. H. TreSpEx-Detection of misleading signal in phylogenetic reconstructions based on tree information. Evol. Bioinform. Online 10, 51–67 (2014)
    Article PubMed PubMed Central Google Scholar
  42. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010)
    Article PubMed PubMed Central CAS Google Scholar
  43. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014)
    Article CAS PubMed PubMed Central Google Scholar
  44. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011)
    Article CAS PubMed Google Scholar
  45. Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013)
    Article CAS PubMed Google Scholar
  46. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012)
    Article PubMed PubMed Central Google Scholar

Download references