Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy - PubMed (original) (raw)
. 2016 Jun 16;534(7607):396-401.
doi: 10.1038/nature18300. Epub 2016 Jun 1.
Mustafa Diken 1 3, Heinrich Haas 3, Sebastian Kreiter 1 3, Carmen Loquai 4, Kerstin C Reuter 3, Martin Meng 3, Daniel Fritz 3, Fulvia Vascotto 1, Hossam Hefesha 3, Christian Grunwitz 2 3, Mathias Vormehr 2 3, Yves Hüsemann 3, Abderraouf Selmi 1 2, Andreas N Kuhn 3, Janina Buck 3, Evelyna Derhovanessian 3, Richard Rae 1, Sebastian Attig 1 2, Jan Diekmann 3, Robert A Jabulowsky 3, Sandra Heesch 3, Jessica Hassel 5, Peter Langguth 6, Stephan Grabbe 4, Christoph Huber 1 3, Özlem Türeci 7, Ugur Sahin 1 2 3
Affiliations
- PMID: 27281205
- DOI: 10.1038/nature18300
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
Lena M Kranz et al. Nature. 2016.
Abstract
Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.
Comment in
- Immunotherapy: Cancer vaccine triggers antiviral-type defences.
De Vries J, Figdor C. De Vries J, et al. Nature. 2016 Jun 16;534(7607):329-31. doi: 10.1038/nature18443. Epub 2016 Jun 1. Nature. 2016. PMID: 27281206 No abstract available.
Similar articles
- Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients.
Bonehill A, Van Nuffel AM, Corthals J, Tuyaerts S, Heirman C, François V, Colau D, van der Bruggen P, Neyns B, Thielemans K. Bonehill A, et al. Clin Cancer Res. 2009 May 15;15(10):3366-75. doi: 10.1158/1078-0432.CCR-08-2982. Epub 2009 May 5. Clin Cancer Res. 2009. PMID: 19417017 - Influenza A infection enhances cross-priming of CD8+ T cells to cell-associated antigens in a TLR7- and type I IFN-dependent fashion.
Wei J, Waithman J, Lata R, Mifsud NA, Cebon J, Kay T, Smyth MJ, Sadler AJ, Chen W. Wei J, et al. J Immunol. 2010 Nov 15;185(10):6013-22. doi: 10.4049/jimmunol.1002129. Epub 2010 Oct 18. J Immunol. 2010. PMID: 20956347 - Immunotherapy: Cancer vaccine triggers antiviral-type defences.
De Vries J, Figdor C. De Vries J, et al. Nature. 2016 Jun 16;534(7607):329-31. doi: 10.1038/nature18443. Epub 2016 Jun 1. Nature. 2016. PMID: 27281206 No abstract available. - Review: dendritic cell immunotherapy for melanoma.
Hadzantonis M, O'Neill H. Hadzantonis M, et al. Cancer Biother Radiopharm. 1999 Feb;14(1):11-22. doi: 10.1089/cbr.1999.14.11. Cancer Biother Radiopharm. 1999. PMID: 10850282 Review. - Dendritic cell vaccines for cancer immunotherapy.
Timmerman JM, Levy R. Timmerman JM, et al. Annu Rev Med. 1999;50:507-29. doi: 10.1146/annurev.med.50.1.507. Annu Rev Med. 1999. PMID: 10073291 Review.
Cited by
- Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy.
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Liu H, et al. J Nanobiotechnology. 2024 Oct 27;22(1):663. doi: 10.1186/s12951-024-02913-7. J Nanobiotechnology. 2024. PMID: 39465376 Free PMC article. Review. - Exploring the Impact of In Vitro-Transcribed mRNA Impurities on Cellular Responses.
Camperi J, Roper B, Freund E, Leylek R, Nissenbaum A, Galan C, Caothien R, Hu Z, Ko P, Lee A, Chatla K, Ayalew L, Yang F, Lippold S, Guilbaud A. Camperi J, et al. Anal Chem. 2024 Nov 5;96(44):17789-17799. doi: 10.1021/acs.analchem.4c04162. Epub 2024 Oct 24. Anal Chem. 2024. PMID: 39445393 - Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment.
Baharom F, Hermans D, Delamarre L, Seder RA. Baharom F, et al. Nat Rev Immunol. 2024 Oct 21. doi: 10.1038/s41577-024-01091-9. Online ahead of print. Nat Rev Immunol. 2024. PMID: 39433884 Review. - Nanotechnology for boosting ovarian cancer immunotherapy.
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Kaur P, et al. J Ovarian Res. 2024 Oct 14;17(1):202. doi: 10.1186/s13048-024-01507-z. J Ovarian Res. 2024. PMID: 39402681 Free PMC article. Review. - Lipopolyplex-formulated mRNA cancer vaccine elicits strong neoantigen-specific T cell responses and antitumor activity.
Fan T, Xu C, Wu J, Cai Y, Cao W, Shen H, Zhang M, Zhu H, Yang J, Zhu Z, Ma X, Ren J, Huang L, Li Q, Tang Y, Yu B, Chen C, Xu M, Wang Q, Xu Z, Chen F, Liang S, Zhong Z, Jamroze A, Tang DG, Li H, Dong C. Fan T, et al. Sci Adv. 2024 Oct 11;10(41):eadn9961. doi: 10.1126/sciadv.adn9961. Epub 2024 Oct 11. Sci Adv. 2024. PMID: 39392882 Free PMC article.
References
- Blood. 2006 Dec 15;108(13):4009-17 - PubMed
- Nat Rev Immunol. 2015 Jul;15(7):405-14 - PubMed
- Nature. 2015 Apr 30;520(7549):692-6 - PubMed
- Nat Rev Immunol. 2007 Oct;7(10):790-802 - PubMed
- Mol Ther. 2013 Jan;21(1):251-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous