Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia - PubMed (original) (raw)

Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia

Chau-To Kwok et al. J Hematol Oncol. 2017.

Erratum in

Abstract

Methylation of N6 adenosine (m6A) is known to be important for diverse biological processes including gene expression control, translation of protein, and messenger RNA (mRNA) splicing. However, its role in the development of human cancers is poorly understood. By analyzing datasets from the Cancer Genome Atlas Research Network (TCGA) acute myeloid leukemia (AML) study, we discover that mutations and/or copy number variations of m6A regulatory genes are strongly associated with the presence of TP53 mutations in AML patients. Further, our analyses reveal that alterations in m6A regulatory genes confer a worse survival in AML. Our work indicates that genetic alterations of m6A regulatory genes may cooperate with TP53 and/or its regulator/downstream targets in the pathogenesis and/or maintenance of AML.

Keywords: Acute myeloid leukemia; Leukemia; RNA modification; TP53 mutation; m6A.

PubMed Disclaimer

Figures

Fig. 1

Fig. 1

Kaplan-Meier curves for overall and event-free survival of TCGA AML patients by the presence and absence of a mutation of m6A regulatory genes, b mutation and/or copy number variation (CNV) of m6A regulatory genes, and c deletion/copy number loss of the ALKBH5 gene encoding an important m6A “eraser.” Mutations include point mutation, deep deletion, and amplification. Log-rank test was used to determine significance. +, censored data. d Multivariate analysis for overall and event-free survival in TCGA AML patients

References

    1. Liu N, Pan T. N6-methyladenosine-encoded epitranscriptomics. Nat Struct Mol Biol. 2016;23:98–102. doi: 10.1038/nsmb.3162. - DOI - PubMed
    1. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206. doi: 10.1038/nature11112. - DOI - PubMed
    1. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong G-M, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–141. doi: 10.1016/j.ccell.2016.11.017. - DOI - PMC - PubMed
    1. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. - DOI - PMC - PubMed
    1. The Cancer Genome Atlas Research Network Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New Engl J Med. 2013;368:2059–2074. doi: 10.1056/NEJMoa1301689. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources