Mechanism of Diol Dehydration by a Promiscuous Radical-SAM Enzyme Homologue of the Antiviral Enzyme Viperin (RSAD2) - PubMed (original) (raw)
. 2020 Jun 2;21(11):1605-1612.
doi: 10.1002/cbic.201900776. Epub 2020 Feb 27.
Affiliations
- PMID: 31951306
- DOI: 10.1002/cbic.201900776
Mechanism of Diol Dehydration by a Promiscuous Radical-SAM Enzyme Homologue of the Antiviral Enzyme Viperin (RSAD2)
Kourosh Honarmand Ebrahimi et al. Chembiochem. 2020.
Abstract
3'-Deoxynucleotides are an important class of drugs because they interfere with the metabolism of nucleotides, and their incorporation into DNA or RNA terminates cell division and viral replication. These compounds are generally produced by multi-step chemical synthesis, and an enzyme with the ability to catalyse the removal of the 3'-deoxy group from different nucleotides has yet to be described. Here, using a combination of HPLC, HRMS and NMR spectroscopy, we demonstrate that a thermostable fungal radical S-adenosylmethionine (SAM) enzyme, with similarity to the vertebrate antiviral enzyme viperin (RSAD2), can catalyse the transformation of CTP, UTP and 5-bromo-UTP to their 3'-deoxy-3',4'-didehydro (ddh) analogues. We show that, unlike the fungal enzyme, human viperin only catalyses the transformation of CTP to ddhCTP. Using electron paramagnetic resonance spectroscopy and molecular docking and dynamics simulations in combination with mutagenesis studies, we provide insight into the origin of the unprecedented substrate promiscuity of the enzyme and the mechanism of dehydration of a nucleotide. Our findings highlight the evolution of substrate specificity in a member of the radical-SAM enzymes. We predict that our work will help in using a new class of the radical-SAM enzymes for the biocatalytic synthesis of 3'-deoxy nucleotide/nucleoside analogues.
Keywords: antiviral agents; nucleotide analogues; radical-SAM enzyme; tyrosyl radicals; viperin.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
- Structural Basis of the Substrate Selectivity of Viperin.
Fenwick MK, Su D, Dong M, Lin H, Ealick SE. Fenwick MK, et al. Biochemistry. 2020 Feb 11;59(5):652-662. doi: 10.1021/acs.biochem.9b00741. Epub 2020 Jan 16. Biochemistry. 2020. PMID: 31917549 Free PMC article. - Viperin, through its radical-SAM activity, depletes cellular nucleotide pools and interferes with mitochondrial metabolism to inhibit viral replication.
Ebrahimi KH, Howie D, Rowbotham JS, McCullagh J, Armstrong FA, James WS. Ebrahimi KH, et al. FEBS Lett. 2020 May;594(10):1624-1630. doi: 10.1002/1873-3468.13761. Epub 2020 Mar 2. FEBS Lett. 2020. PMID: 32061099 - The radical-SAM enzyme Viperin catalyzes reductive addition of a 5'-deoxyadenosyl radical to UDP-glucose in vitro.
Honarmand Ebrahimi K, Carr SB, McCullagh J, Wickens J, Rees NH, Cantley J, Armstrong FA. Honarmand Ebrahimi K, et al. FEBS Lett. 2017 Aug;591(16):2394-2405. doi: 10.1002/1873-3468.12769. Epub 2017 Aug 15. FEBS Lett. 2017. PMID: 28752893 - Viperin Reveals Its True Function.
Rivera-Serrano EE, Gizzi AS, Arnold JJ, Grove TL, Almo SC, Cameron CE. Rivera-Serrano EE, et al. Annu Rev Virol. 2020 Sep 29;7(1):421-446. doi: 10.1146/annurev-virology-011720-095930. Epub 2020 Jun 30. Annu Rev Virol. 2020. PMID: 32603630 Free PMC article. Review. - A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry.
Honarmand Ebrahimi K. Honarmand Ebrahimi K. Metallomics. 2018 Apr 25;10(4):539-552. doi: 10.1039/C7MT00341B. Metallomics. 2018. PMID: 29568838 Review.
Cited by
- Development of 3'-Deoxy-3',4'-didehydro-nucleoside Prodrug Inhibitors of West Nile and Zika Viruses.
Kennelly SA, Sawyer JM, Payne AF, Ciota AT, Harki DA. Kennelly SA, et al. ACS Med Chem Lett. 2024 Jul 15;15(8):1334-1339. doi: 10.1021/acsmedchemlett.4c00225. eCollection 2024 Aug 8. ACS Med Chem Lett. 2024. PMID: 39140046 - Integrative Molecular Structure Elucidation and Construction of an Extended Metabolic Pathway Associated with an Ancient Innate Immune Response in COVID-19 Patients.
Sala S, Nitschke P, Masuda R, Gray N, Lawler NG, Wood JM, Buckler JN, Berezhnoy G, Bolaños J, Boughton BA, Lonati C, Rössler T, Singh Y, Wilson ID, Lodge S, Morillon AC, Loo RL, Hall D, Whiley L, Evans GB, Grove TL, Almo SC, Harris LD, Holmes E, Merle U, Trautwein C, Nicholson JK, Wist J. Sala S, et al. J Proteome Res. 2024 Mar 1;23(3):956-970. doi: 10.1021/acs.jproteome.3c00654. Epub 2024 Feb 4. J Proteome Res. 2024. PMID: 38310443 Free PMC article. - Radical-SAM dependent nucleotide dehydratase (SAND), rectification of the names of an ancient iron-sulfur enzyme using NC-IUBMB recommendations.
Ji Y, Wei L, Da A, Stark H, Hagedoorn PL, Ciofi-Baffoni S, Cowley SA, Louro RO, Todorovic S, Mroginski MA, Nicolet Y, Roessler MM, Le Brun NE, Piccioli M, James WS, Hagen WR, Ebrahimi KH. Ji Y, et al. Front Mol Biosci. 2022 Oct 21;9:1032220. doi: 10.3389/fmolb.2022.1032220. eCollection 2022. Front Mol Biosci. 2022. PMID: 36387278 Free PMC article. No abstract available. - Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal.
Rack JGM, Liu Q, Zorzini V, Voorneveld J, Ariza A, Honarmand Ebrahimi K, Reber JM, Krassnig SC, Ahel D, van der Marel GA, Mangerich A, McCullagh JSO, Filippov DV, Ahel I. Rack JGM, et al. Nat Commun. 2021 Jul 28;12(1):4581. doi: 10.1038/s41467-021-24723-3. Nat Commun. 2021. PMID: 34321462 Free PMC article. - Structural Insight into the Substrate Scope of Viperin and Viperin-like Enzymes from Three Domains of Life.
Lachowicz JC, Gizzi AS, Almo SC, Grove TL. Lachowicz JC, et al. Biochemistry. 2021 Jul 6;60(26):2116-2129. doi: 10.1021/acs.biochem.0c00958. Epub 2021 Jun 22. Biochemistry. 2021. PMID: 34156827 Free PMC article.
References
- L. P. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, Nat. Rev. Drug Discovery 2013, 12, 447-464.
- E. De Clercq, G. Li, Clin. Microbiol. Rev. 2016, 29, 695-747.
- S. I. Maffioli, Y. Zhang, D. Degen, T. Garzaniga, G. Del Gatto, S. Serina, P. Monciardini, C. Mazzetti, P. Guglierame, G. Candiani, A. I. Chiriac, G. Facchetti, P. Kaltofen, H.-G. Sahl, G. Dehò, S. Donadio, R. H. Ebright, Cell 2017, 169, 1240-1248.
- C. L. Lai, N. Leung, E. K. Teo, M. Tong, F. Wong, H. W. Hann, S. Han, T. Poynard, M. Myers, G. Chao, D. Lloyd, N. A. Brown, Gastroenterology 2005, 129, 528-536.
- C. J. Torrance, V. Agrawal, B. Vogelstein, K. W. Kinzler, Nat. Biotechnol. 2001, 19, 940-945.
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Research Materials