Measurement of Pi dissociation from actin filaments following ATP hydrolysis using a linked enzyme assay - PubMed (original) (raw)
Measurement of Pi dissociation from actin filaments following ATP hydrolysis using a linked enzyme assay
M F Carlier. Biochem Biophys Res Commun. 1987.
Abstract
Using glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase as a linked enzyme assay for determination of free inorganic phosphate, as described by Trentham et al. (1972, Biochem. J. 126, 635-644) we have been able to monitor the time course of Pi release from F-actin following ATP hydrolysis that accompanies ATP-actin polymerization. The rate constant for Pi dissociation from Mg-F-actin is 0.006 s-1 at 25 degrees C and pH 7.8, both in the presence of 1 mM Mg and 0.1 M KCl + 1 mM Mg. This result confirms the existence of ADP-Pi-F-actin as a major intermediate in the polymerization of ATP-actin (Carlier and Pantaloni, 1986, Biochemistry 25, 7789-7792). The method is potentially useful for other enzymes hydrolyzing triphosphate nucleotides, provided that the rate of Pi release is appreciably lower than 0.1 s-1.
Similar articles
- Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization.
Carlier MF, Pantaloni D. Carlier MF, et al. J Biol Chem. 1988 Jan 15;263(2):817-25. J Biol Chem. 1988. PMID: 3335528 - Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments.
Carlier MF, Pantaloni D. Carlier MF, et al. Biochemistry. 1986 Dec 2;25(24):7789-92. doi: 10.1021/bi00372a001. Biochemistry. 1986. PMID: 3801442 - Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin.
Carlier MF, Valentin-Ranc C, Combeau C, Fievez S, Pantoloni D. Carlier MF, et al. Adv Exp Med Biol. 1994;358:71-81. doi: 10.1007/978-1-4615-2578-3_7. Adv Exp Med Biol. 1994. PMID: 7801813 Review. - Modeling of the actomyosin ATPase activity. Origin of the initial phosphate burst and implications of the phosphate release kinetics.
Stein LA. Stein LA. Cell Biochem Biophys. 1995-1996;27(2):63-96. doi: 10.1007/BF02815399. Cell Biochem Biophys. 1995. PMID: 9106393 Review.
Cited by
- The effect of toxins on inorganic phosphate release during actin polymerization.
Vig A, Ohmacht R, Jámbor E, Bugyi B, Nyitrai M, Hild G. Vig A, et al. Eur Biophys J. 2011 May;40(5):619-26. doi: 10.1007/s00249-010-0659-y. Epub 2011 Jan 4. Eur Biophys J. 2011. PMID: 21203885 - Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability.
Popp D, Narita A, Oda T, Fujisawa T, Matsuo H, Nitanai Y, Iwasa M, Maeda K, Onishi H, Maéda Y. Popp D, et al. EMBO J. 2008 Feb 6;27(3):570-9. doi: 10.1038/sj.emboj.7601978. Epub 2008 Jan 10. EMBO J. 2008. PMID: 18188150 Free PMC article. - Arp2/3 complex and cofilin modulate binding of tropomyosin to branched actin networks.
Hsiao JY, Goins LM, Petek NA, Mullins RD. Hsiao JY, et al. Curr Biol. 2015 Jun 15;25(12):1573-82. doi: 10.1016/j.cub.2015.04.038. Epub 2015 May 28. Curr Biol. 2015. PMID: 26028436 Free PMC article. - Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover.
Hvorecny KL, Sladewski TE, De La Cruz EM, Kollman JM, Heaslip AT. Hvorecny KL, et al. Nat Commun. 2024 Feb 28;15(1):1840. doi: 10.1038/s41467-024-46111-3. Nat Commun. 2024. PMID: 38418447 Free PMC article. - A nucleotide state-sensing region on actin.
Kudryashov DS, Grintsevich EE, Rubenstein PA, Reisler E. Kudryashov DS, et al. J Biol Chem. 2010 Aug 13;285(33):25591-601. doi: 10.1074/jbc.M110.123869. Epub 2010 Jun 8. J Biol Chem. 2010. PMID: 20530485 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous