Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli - PubMed (original) (raw)
Comparative Study
Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli
J Lin et al. J Bacteriol. 1995 Jul.
Abstract
Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies. A surprising degree of variety was found between three related genera. The minimum growth pH of Salmonella typhimurium was shown to be significantly lower (pH 4.0) than that of either Escherichia coli (pH 4.4) or Shigella flexneri (pH 4.8), yet E. coli and S. flexneri both survive exposure to lower pH levels (2 to 2.5) than S. typhimurium (pH 3.0) in complex medium. S. typhimurium and E. coli but not S. flexneri expressed low-pH-inducible log-phase and stationary-phase acid tolerance response (ATR) systems that function in minimal or complex medium to protect cells to pH 3.0. All of the organisms also expressed a pH-independent general stress resistance system that contributed to acid survival during stationary phase. E. coli and S. flexneri possessed several acid survival systems (termed acid resistance [AR]) that were not demonstrable in S. typhimurium. These additional AR systems protected cells to pH 2.5 and below but required supplementation of minimal medium for either induction or function. One acid-inducible AR system required oxidative growth in complex medium for expression but successfully protected cells to pH 2.5 in unsupplemented minimal medium, while two other AR systems important for fermentatively grown cells required the addition of either glutamate or arginine during pH 2.5 acid challenge. The arginine AR system was only observed in E. coli and required stationary-phase induction in acidified complex medium. The product of the adi locus, arginine decarboxylase, was responsible for arginine-based acid survival.
Similar articles
- Comparative analysis of transcriptional regulatory elements of glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157:H7.
Bhagwat AA, Bhagwat M. Bhagwat AA, et al. FEMS Microbiol Lett. 2004 May 1;234(1):139-47. doi: 10.1016/j.femsle.2004.03.020. FEMS Microbiol Lett. 2004. PMID: 15109732 - Control of acid resistance in Escherichia coli.
Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Castanie-Cornet MP, et al. J Bacteriol. 1999 Jun;181(11):3525-35. doi: 10.1128/JB.181.11.3525-3535.1999. J Bacteriol. 1999. PMID: 10348866 Free PMC article. - Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium.
Alvarez-Ordóñez A, Fernández A, Bernardo A, López M. Alvarez-Ordóñez A, et al. Int J Food Microbiol. 2010 Jan 1;136(3):278-82. doi: 10.1016/j.ijfoodmicro.2009.09.024. Epub 2009 Oct 4. Int J Food Microbiol. 2010. PMID: 19864032 - Inducible acid tolerance mechanisms in enteric bacteria.
Foster JW, Moreno M. Foster JW, et al. Novartis Found Symp. 1999;221:55-69; discussion 70-4. doi: 10.1002/9780470515631.ch5. Novartis Found Symp. 1999. PMID: 10207913 Review. - Low pH adaptation and the acid tolerance response of Salmonella typhimurium.
Foster JW. Foster JW. Crit Rev Microbiol. 1995;21(4):215-37. doi: 10.3109/10408419509113541. Crit Rev Microbiol. 1995. PMID: 8688153 Review.
Cited by
- Response of Escherichia coli to Acid Stress: Mechanisms and Applications-A Narrative Review.
Li Z, Huang Z, Gu P. Li Z, et al. Microorganisms. 2024 Aug 28;12(9):1774. doi: 10.3390/microorganisms12091774. Microorganisms. 2024. PMID: 39338449 Free PMC article. Review. - Microbial dynamics and vertical transmission of Escherichia coli across consecutive life stages of the black soldier fly (Hermetia illucens).
Van Looveren N, IJdema F, van der Heijden N, Van Der Borght M, Vandeweyer D. Van Looveren N, et al. Anim Microbiome. 2024 May 26;6(1):29. doi: 10.1186/s42523-024-00317-4. Anim Microbiome. 2024. PMID: 38797818 Free PMC article. - Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation.
Otite SV, Lag-Brotons AJ, Ezemonye LI, Martin AD, Pickup RW, Semple KT. Otite SV, et al. Molecules. 2024 Apr 23;29(9):1908. doi: 10.3390/molecules29091908. Molecules. 2024. PMID: 38731399 Free PMC article. - Boosting Fitness Costs Associated with Antibiotic Resistance in the Gut: On the Way to Biorestoration of Susceptible Populations.
Baquero F, Rodríguez-Beltrán J, Coque TM, Del Campo R. Baquero F, et al. Biomolecules. 2024 Jan 8;14(1):76. doi: 10.3390/biom14010076. Biomolecules. 2024. PMID: 38254676 Free PMC article. Review. - Evaluation of the Antimicrobial Activity of a Formulation Containing Ascorbic Acid and Eudragit FS 30D Microparticles for the Controlled Release of a Curcumin-Boric Acid Solid Dispersion in Turkey Poults Infected with Salmonella enteritidis: A Therapeutic Model.
Hernandez-Patlan D, Solis-Cruz B, Latorre JD, Maguey-Gonzalez JA, Castellanos-Huerta I, Beyssac E, Garrait G, Vázquez-Durán A, López-Arellano R, Méndez-Albores A, Hargis BM, Tellez-Isaias G. Hernandez-Patlan D, et al. Int J Mol Sci. 2023 Nov 10;24(22):16186. doi: 10.3390/ijms242216186. Int J Mol Sci. 2023. PMID: 38003375 Free PMC article.
References
- Nature. 1981 May 21;291(5812):238-9 - PubMed
- J Biol Chem. 1956 Jan;218(1):97-106 - PubMed
- J Bacteriol. 1983 May;154(2):561-8 - PubMed
- J Bacteriol. 1983 Oct;156(1):471-4 - PubMed
- Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189-93 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous