Length heteroplasmy in the first hypervariable segment of the human mtDNA control region - PubMed (original) (raw)
Length heteroplasmy in the first hypervariable segment of the human mtDNA control region
K E Bendall et al. Am J Hum Genet. 1995 Aug.
Abstract
The first hypervariable segment of the human mtDNA control region contains a homopolymeric tract of cytosines between nt 16184 and 16193, interrupted at position 16189 by a thymine, according to the Cambridge reference sequence. A variant commonly found in population screening is a T-to-C transition at nt 16189, resulting in an uninterrupted homopolymeric tract. Direct sequencing of individuals with this variant produces a characteristic blurred sequence in nucleotides beyond the tract. Sequencing clones from these individuals revealed that this is caused by high levels of length heteroplasmy in the homopolymeric tract and low levels of length heteroplasmy in the four adenines following the tract. We have developed a rapid method involving densitometry of sequencing gels to quantify the relative proportions of different length variants present in an individual. We have used this to study the proportions of length variants in individuals from three twin pairs and two maternal lineages. While unrelated individuals usually have different proportions of length variants, all maternally related individuals studied have the same proportions, even if they are only distantly related. It is not obvious how identical heteroplasmic profiles are maintained in maternally related individuals, but some possible mechanisms are suggested.
Comment in
- Transmission of mtDNA: cracks in the bottleneck.
Poulton J. Poulton J. Am J Hum Genet. 1995 Aug;57(2):224-6. Am J Hum Genet. 1995. PMID: 7668245 Free PMC article. No abstract available.
Similar articles
- Mitochondrial heteroplasmy among maternally related individuals.
Lutz S, Weisser HJ, Heizmann J, Pollak S. Lutz S, et al. Int J Legal Med. 2000;113(3):155-61. doi: 10.1007/s004140050288. Int J Legal Med. 2000. PMID: 10876987 - Different methods to determine length heteroplasmy within the mitochondrial control region.
Lutz-Bonengel S, Sänger T, Pollak S, Szibor R. Lutz-Bonengel S, et al. Int J Legal Med. 2004 Oct;118(5):274-81. doi: 10.1007/s00414-004-0457-0. Int J Legal Med. 2004. PMID: 15160269 - mtDNA HVI length heteroplasmic profile in different tissues of maternally related members.
Bini C, Pappalardo G. Bini C, et al. Forensic Sci Int. 2005 Aug 11;152(1):35-8. doi: 10.1016/j.forsciint.2005.03.006. Epub 2005 Apr 18. Forensic Sci Int. 2005. PMID: 15939174 - [Heteroplasmy in human mtDNA control region].
Cao Y, Wan LH, Gu LG, Huang YX, Xiu CX, Hu SH, Mi C. Cao Y, et al. Fa Yi Xue Za Zhi. 2006 Jun;22(3):190-2. Fa Yi Xue Za Zhi. 2006. PMID: 16856340 Chinese. - Nuclear mitochondrial interplay in the modulation of the homopolymeric tract length heteroplasmy in the control (D-loop) region of the mitochondrial DNA.
Malik S, Sudoyo H, Pramoonjago P, Suryadi H, Sukarna T, Njunting M, Sahiratmadja E, Marzuki S. Malik S, et al. Hum Genet. 2002 May;110(5):402-11. doi: 10.1007/s00439-002-0717-3. Epub 2002 Apr 4. Hum Genet. 2002. PMID: 12073009
Cited by
- The nuclear and mitochondrial genome assemblies of Tetragonisca angustula (Apidae: Meliponini), a tiny yet remarkable pollinator in the Neotropics.
Ferrari RR, Ricardo PC, Dias FC, de Souza Araujo N, Soares DO, Zhou QS, Zhu CD, Coutinho LL, Arias MC, Batista TM. Ferrari RR, et al. BMC Genomics. 2024 Jun 11;25(1):587. doi: 10.1186/s12864-024-10502-z. BMC Genomics. 2024. PMID: 38862915 Free PMC article. - Post hoc deconvolution of human mitochondrial DNA mixtures by EMMA 2 using fine-tuned Phylotree nomenclature.
Dür A, Huber N, Röck A, Berger C, Amory C, Parson W. Dür A, et al. Comput Struct Biotechnol J. 2022 Jul 2;20:3630-3638. doi: 10.1016/j.csbj.2022.06.053. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 35860401 Free PMC article. - Mitochondrial DNA Consensus Calling and Quality Filtering for Constructing Ancient Human Mitogenomes: Comparison of Two Widely Applied Methods.
Heraclides A, Fernández-Domínguez E. Heraclides A, et al. Int J Mol Sci. 2022 Apr 22;23(9):4651. doi: 10.3390/ijms23094651. Int J Mol Sci. 2022. PMID: 35563041 Free PMC article. - Research highlights on contributions of mitochondrial DNA microsatellite instability in solid cancers - an overview.
Yusoff AAM, Radzak SMA, Khair SZNM. Yusoff AAM, et al. Contemp Oncol (Pozn). 2022;26(1):8-26. doi: 10.5114/wo.2022.115674. Epub 2022 Mar 30. Contemp Oncol (Pozn). 2022. PMID: 35506039 Free PMC article. Review. - Circum-Saharan Prehistory through the Lens of mtDNA Diversity.
Diallo MY, Čížková M, Kulichová I, Podgorná E, Priehodová E, Nováčková J, Fernandes V, Pereira L, Černý V. Diallo MY, et al. Genes (Basel). 2022 Mar 17;13(3):533. doi: 10.3390/genes13030533. Genes (Basel). 2022. PMID: 35328086 Free PMC article.
References
- Am J Hum Genet. 1990 Jul;47(1):95-100 - PubMed
- J Mol Evol. 1993 Oct;37(4):347-54 - PubMed
- Cell. 1977 Jul;11(3):571-83 - PubMed
- Nat Genet. 1994 Feb;6(2):114-6 - PubMed
- Mol Gen Genet. 1989 Dec;220(1):127-32 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials