A biosensor approach to probe the structure and function of the p85 alpha subunit of the phosphatidylinositol 3-kinase complex - PubMed (original) (raw)
. 1993 May 15;268(14):10066-75.
Affiliations
- PMID: 7683666
Free article
A biosensor approach to probe the structure and function of the p85 alpha subunit of the phosphatidylinositol 3-kinase complex
P End et al. J Biol Chem. 1993.
Free article
Abstract
Phosphatidylinositol 3-kinase, which generates putative novel second messenger phospholipids, is a heterodimer composed of regulatory adaptor 85-kDa and catalytic 110-kDa subunits. The p85 alpha subunit contains a NH2-terminal src homology (SH) 3 domain, a region with homology to the product of the breakpoint cluster region (bcr) gene, and a COOH-terminal portion of the molecule which contains two SH2 domains, separated by a spacer region. In this study a panel of monoclonal antibodies (mAb) was raised against recombinant bovine p85 alpha to probe its multidomain structure in relation to function. These mAbs were characterized using a BIAcore biosensor instrument. Epitopes for nine mAbs were mapped in relation to the domain structure of p85 alpha using recombinant protein fragments expressed in bacteria. These mAbs were then used to map the sites on p85 alpha which are involved in growth factor receptor binding. Two interesting classes of functional mAbs were identified. First, mAb U14, whose epitope lies within the NH2-terminal SH2 domain of p85 alpha, blocked the interaction of p85 alpha with activated protein-tyrosine kinase receptors. Second, real-time binding experiments using phospholipid-containing vesicles showed that p85 alpha by itself could specifically bind certain phospholipids. Two mAbs (U9 and U15) with epitopes located in the inter-SH2 spacer region blocked the binding of lipids to this site. The relevance of these observations to understanding the relationship of structure to function of p85 and the phosphatidylinositol 3-kinase are discussed.
Similar articles
- Expression and characterization of the p85 subunit of the phosphatidylinositol 3-kinase complex and a related p85 beta protein by using the baculovirus expression system.
Gout I, Dhand R, Panayotou G, Fry MJ, Hiles I, Otsu M, Waterfield MD. Gout I, et al. Biochem J. 1992 Dec 1;288 ( Pt 2)(Pt 2):395-405. doi: 10.1042/bj2880395. Biochem J. 1992. PMID: 1334406 Free PMC article. - IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.
Myers MG Jr, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF. Myers MG Jr, et al. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10350-4. doi: 10.1073/pnas.89.21.10350. Proc Natl Acad Sci U S A. 1992. PMID: 1332046 Free PMC article. - A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo.
Klippel A, Escobedo JA, Hu Q, Williams LT. Klippel A, et al. Mol Cell Biol. 1993 Sep;13(9):5560-6. doi: 10.1128/mcb.13.9.5560-5566.1993. Mol Cell Biol. 1993. PMID: 8395006 Free PMC article. - Structure and function of phosphatidylinositol 3-kinase: a potential second messenger system involved in growth control.
Fry MJ, Waterfield MD. Fry MJ, et al. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):337-44. doi: 10.1098/rstb.1993.0076. Philos Trans R Soc Lond B Biol Sci. 1993. PMID: 8103937 Review. - Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors.
Katada T, Kurosu H, Okada T, Suzuki T, Tsujimoto N, Takasuga S, Kontani K, Hazeki O, Ui M. Katada T, et al. Chem Phys Lipids. 1999 Apr;98(1-2):79-86. doi: 10.1016/s0009-3084(99)00020-1. Chem Phys Lipids. 1999. PMID: 10358930 Review.
Cited by
- Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts.
Goruppi S, Ruaro E, Varnum B, Schneider C. Goruppi S, et al. Mol Cell Biol. 1997 Aug;17(8):4442-53. doi: 10.1128/MCB.17.8.4442. Mol Cell Biol. 1997. PMID: 9234702 Free PMC article. - A protein required for nuclear-protein import, Mog1p, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue.
Oki M, Nishimoto T. Oki M, et al. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15388-93. doi: 10.1073/pnas.95.26.15388. Proc Natl Acad Sci U S A. 1998. PMID: 9860978 Free PMC article. - Evanescent wave biosensors. Real-time analysis of biomolecular interactions.
Hutchinson AM. Hutchinson AM. Mol Biotechnol. 1995 Feb;3(1):47-54. doi: 10.1007/BF02821334. Mol Biotechnol. 1995. PMID: 7606504 Review. - Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes.
Thelen M, Wymann MP, Langen H. Thelen M, et al. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4960-4. doi: 10.1073/pnas.91.11.4960. Proc Natl Acad Sci U S A. 1994. PMID: 8197165 Free PMC article. - Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers.
Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B. Geering B, et al. Proc Natl Acad Sci U S A. 2007 May 8;104(19):7809-14. doi: 10.1073/pnas.0700373104. Epub 2007 Apr 30. Proc Natl Acad Sci U S A. 2007. PMID: 17470792 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous