Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. Identification of domains in mammalian transferases - PubMed (original) (raw)

. 1995 Jan 13;270(2):541-4.

doi: 10.1074/jbc.270.2.541.

Affiliations

Free article

Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. Identification of domains in mammalian transferases

T Takada et al. J Biol Chem. 1995.

Free article

Abstract

Bacterial toxin ADP-ribosyltransferases, e.g. diphtheria toxin (DT) and pertussis toxin, have in common consensus sequences involved in catalytic activity, which are localized to three regions. Region I is notable for a histidine or arginine; region II, approximately 50-75 amino acids downstream, is rich in aromatic/hydrophobic amino acids; and region III, further downstream, has a glutamate and other acidic amino acids. A similar motif was observed in the sequence of the glycosylphosphatidylinositol-linked muscle ADP-ribosyltransferase. Site-directed mutagenesis was performed to verify the role of this motif. Proteins were expressed in rat adenocarcinoma cells, released from the cell with phosphatidylinositol-specific phospholipase C, and quantified with polyclonal antibodies. Transferase His114 in region I aligned with His21 of DT; as with DT, the H114N mutant was active. Aromatic/hydrophobic amino acids (region II) were found approximately 30-50 amino acids downstream of this histidine. Although transferase has a Glu278-Tyr-Ile sequence characteristic of region III in DT, Glu278 was not critical for activity. In an alternative region III containing Glu238-Glu239-Glu240, Glu238 and Glu240 but not Glu239 were critical. Glu240 aligned with critical glutamates in DT, Pseudomonas exotoxin, and C3 transferase. Thus, the mammalian ADP-ribosyltransferases have motifs similar to toxin ADP-ribosyltransferases, suggesting that these sequences are important in ADP-ribose transfer reactions.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources