The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities - PubMed (original) (raw)
. 1994 Nov;9(11):3249-57.
Affiliations
- PMID: 7936649
The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities
M Fiscella et al. Oncogene. 1994 Nov.
Abstract
Wild-type p53 functions in the G1 DNA damage checkpoint pathway by activating gene transcription and preventing cell cycle progression. Others reported that mutation of the serine 386 codon in mouse p53 abolished its ability to suppress growth. Serine 386 of murine p53 and the homologous residue of human p53, serine 392, are phosphorylated in vivo and can be phosphorylated in vitro by casein kinase II (CKII). We constructed mutants that changed serine 392 of human p53 to alanine (p53-S392A) or aspartic acid (p53-S392D); cotransfection of both these mutants with a reporter gene carrying a p53-responsive element into the p53-null Saos-2 cell line activated transcription as well as did wild-type p53. Furthermore, both mutants blocked cell cycle progression after transient transfection in these cells. A stable derivative of the T98G human glioblastoma cell line was established that expressed p53-S392A in response to dexamethasone. Overexpression of this mutant activated transcription of the endogenous waf1 (also called cip1) and mdm2 genes to the same extent as wild-type p53 and also produced growth arrest. Finally, p53-S392A and p53-S392D suppressed foci formation by activated ras and adenovirus E1A oncogenes as efficiently as did wild-type p53. Thus, unlike mutants that altered the serine 15 phosphorylation site, elimination of the serine 392 phosphorylation site had no discernible effect on p53 function. We conclude that neither phosphorylation nor RNA attachment to serine 392 are required for human p53's ability to suppress cell growth or to activate transcription in vivo.
Similar articles
- Deregulation of p53/p21Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after gamma-irradiation.
Bulavin DV, Tararova ND, Aksenov ND, Pospelov VA, Pospelova TV. Bulavin DV, et al. Oncogene. 1999 Oct 7;18(41):5611-9. doi: 10.1038/sj.onc.1202945. Oncogene. 1999. PMID: 10523840 - Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1-->S transition via a p53-independent pathway in human hepatoma cells.
Park US, Park SK, Lee YI, Park JG, Lee YI. Park US, et al. Oncogene. 2000 Jul 13;19(30):3384-94. doi: 10.1038/sj.onc.1203674. Oncogene. 2000. PMID: 10918595 - Analysis of the K-ras and p53 pathways in X-ray-induced lung tumors in the rat.
Belinsky SA, Middleton SK, Picksley SM, Hahn FF, Nikula KJ. Belinsky SA, et al. Radiat Res. 1996 Apr;145(4):449-56. Radiat Res. 1996. PMID: 8600505 - Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease.
Goodman JE, Hofseth LJ, Hussain SP, Harris CC. Goodman JE, et al. Environ Mol Mutagen. 2004;44(1):3-9. doi: 10.1002/em.20024. Environ Mol Mutagen. 2004. PMID: 15199542 Review. - [Mdm2, p53 and the cell cycle: when well enough is best left alone].
Maréchal V. Maréchal V. Pathol Biol (Paris). 1997 Dec;45(10):824-32. Pathol Biol (Paris). 1997. PMID: 9769946 Review. French.
Cited by
- Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage.
Cai X, Liu X. Cai X, et al. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16958-63. doi: 10.1073/pnas.0804608105. Epub 2008 Oct 24. Proc Natl Acad Sci U S A. 2008. PMID: 18952844 Free PMC article. - Posttranslational phosphorylation of mutant p53 protein in tumor development.
Matsumoto M, Furihata M, Ohtsuki Y. Matsumoto M, et al. Med Mol Morphol. 2006 Jun;39(2):79-87. doi: 10.1007/s00795-006-0320-0. Med Mol Morphol. 2006. PMID: 16821145 Review. - Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389.
Bruins W, Zwart E, Attardi LD, Iwakuma T, Hoogervorst EM, Beems RB, Miranda B, van Oostrom CT, van den Berg J, van den Aardweg GJ, Lozano G, van Steeg H, Jacks T, de Vries A. Bruins W, et al. Mol Cell Biol. 2004 Oct;24(20):8884-94. doi: 10.1128/MCB.24.20.8884-8894.2004. Mol Cell Biol. 2004. PMID: 15456863 Free PMC article. - Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2.
Pospísilová S, Brázda V, Kucharíková K, Luciani MG, Hupp TR, Skládal P, Palecek E, Vojtesek B. Pospísilová S, et al. Biochem J. 2004 Mar 15;378(Pt 3):939-47. doi: 10.1042/BJ20030662. Biochem J. 2004. PMID: 14640983 Free PMC article. - Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo.
Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J. Doubrovin M, et al. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9300-5. doi: 10.1073/pnas.161091198. Proc Natl Acad Sci U S A. 2001. PMID: 11481488 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Molecular Biology Databases
Research Materials
Miscellaneous