Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study - PubMed (original) (raw)
. 1994 Mar 22;33(11):3237-44.
doi: 10.1021/bi00177a014.
Affiliations
- PMID: 8136358
- DOI: 10.1021/bi00177a014
Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study
M Frech et al. Biochemistry. 1994.
Abstract
The active GTP-bound form of p21ras is converted to the biologically inactive GDP-bound form by enzymatic hydrolysis and this function serves to regulate the wild-type ras protein. The side chain of the amino acid at position 61 may play a key role in this hydrolysis of GTP by p21. Experimental studies that define properties of the Q61E mutant of p21H-ras are presented along with supporting molecular dynamics simulations. We find that under saturating concentrations of GTP the Q61E mutant of p21H-ras has a 20-fold greater rate of intrinsic hydrolysis (kcat = 0.57 min-1) than the wild type. The affinity of the Q61E variant for GTP (Kd = 115 microM) is much lower than that of the wild type. GTPase activating protein does not activate the variant. From molecular dynamics simulations, we find that both the wild type and Q61E mutant have the residue 61 side chain in transient contact with a water molecule that is well-positioned for hydrolytic attack on the gamma phosphate. Thr-35 also is found to form a transient hydrogen bond with this critical water. These elements may define the catalytic complex for hydrolysis of the GTP [Pai et al. (1990) EMBO J. 9, 2351]. Similarly, the G12P mutant, which also has an intrinsic hydrolysis rate similar to the wild type, is found to form the same complex in simulation. In contrast, molecular dynamics analysis of the mutants G12R, G12V, and Q61L, which have much lower intrinsic rates than the wild-type p21, do not show this complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Similar articles
- Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras.
Xu S, Long BN, Boris GH, Chen A, Ni S, Kennedy MA. Xu S, et al. Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):970-984. doi: 10.1107/S2059798317015418. Epub 2017 Nov 10. Acta Crystallogr D Struct Biol. 2017. PMID: 29199977 - Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras.
Franken SM, Scheidig AJ, Krengel U, Rensland H, Lautwein A, Geyer M, Scheffzek K, Goody RS, Kalbitzer HR, Pai EF, et al. Franken SM, et al. Biochemistry. 1993 Aug 24;32(33):8411-20. doi: 10.1021/bi00084a005. Biochemistry. 1993. PMID: 8357792 - A synthetic peptide corresponding to a sequence in the GTPase activating protein inhibits p21ras stimulation and promotes guanine nucleotide exchange.
Rubinfeld B, Wong G, Bekesi E, Wood A, Heimer E, McCormick F, Polakis P. Rubinfeld B, et al. Int J Pept Protein Res. 1991 Jul;38(1):47-53. doi: 10.1111/j.1399-3011.1991.tb01408.x. Int J Pept Protein Res. 1991. PMID: 1938104 - Three-dimensional structure of p21 in the active conformation and analysis of an oncogenic mutant.
Wittinghofer F, Krengel U, John J, Kabsch W, Pai EF. Wittinghofer F, et al. Environ Health Perspect. 1991 Jun;93:11-5. doi: 10.1289/ehp.919311. Environ Health Perspect. 1991. PMID: 1773783 Free PMC article. Review. - Ras-catalyzed hydrolysis of GTP: a new perspective from model studies.
Maegley KA, Admiraal SJ, Herschlag D. Maegley KA, et al. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8160-6. doi: 10.1073/pnas.93.16.8160. Proc Natl Acad Sci U S A. 1996. PMID: 8710841 Free PMC article. Review.
Cited by
- Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach?
Healy FM, Turner AL, Marensi V, MacEwan DJ. Healy FM, et al. Front Pharmacol. 2024 Sep 20;15:1441938. doi: 10.3389/fphar.2024.1441938. eCollection 2024. Front Pharmacol. 2024. PMID: 39372214 Free PMC article. Review. - GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport.
Richardson CJ, Jones S, Litt RJ, Segev N. Richardson CJ, et al. Mol Cell Biol. 1998 Feb;18(2):827-38. doi: 10.1128/MCB.18.2.827. Mol Cell Biol. 1998. PMID: 9447979 Free PMC article. - Comprehensive structure-function analysis reveals gain- and loss-of-function mechanisms impacting oncogenic KRAS activity.
Kwon JJ, Dilly J, Liu S, Kim E, Bian Y, Dharmaiah S, Tran TH, Kapner KS, Ly SH, Yang X, Rabara D, Waybright TJ, Giacomelli AO, Hong AL, Misek S, Wang B, Ravi A, Doench JG, Beroukhim R, Lemke CT, Haigis KM, Esposito D, Root DE, Nissley DV, Stephen AG, McCormick F, Simanshu DK, Hahn WC, Aguirre AJ. Kwon JJ, et al. bioRxiv [Preprint]. 2024 Oct 25:2024.10.22.618529. doi: 10.1101/2024.10.22.618529. bioRxiv. 2024. PMID: 39484452 Free PMC article. Preprint. - Molecular Mechanism for Conformational Dynamics of Ras·GTP Elucidated from In-Situ Structural Transition in Crystal.
Matsumoto S, Miyano N, Baba S, Liao J, Kawamura T, Tsuda C, Takeda A, Yamamoto M, Kumasaka T, Kataoka T, Shima F. Matsumoto S, et al. Sci Rep. 2016 May 16;6:25931. doi: 10.1038/srep25931. Sci Rep. 2016. PMID: 27180801 Free PMC article. - Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells.
Babbey CM, Ahktar N, Wang E, Chen CC, Grant BD, Dunn KW. Babbey CM, et al. Mol Biol Cell. 2006 Jul;17(7):3156-75. doi: 10.1091/mbc.e05-08-0799. Epub 2006 Apr 26. Mol Biol Cell. 2006. PMID: 16641372 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials
Miscellaneous