A structural role for metal ions in the "wild-type" conformation of the tumor suppressor protein p53 - PubMed (original) (raw)
. 1993 Apr 15;53(8):1739-42.
Affiliations
- PMID: 8467489
A structural role for metal ions in the "wild-type" conformation of the tumor suppressor protein p53
P Hainaut et al. Cancer Res. 1993.
Abstract
In human tumors, many different point mutations of the p53 gene knock out suppressor function and induce the p53 polypeptide to adopt an immunologically distinct, "mutant" conformation. Here we show that exposure to the metal chelator 1,10-phenanthroline induces wild-type p53 to adopt the mutant conformation and that this process is reversible. Conversion to mutant phenotype also occurs after exposure to (a) an organic mercurial reagent targeting cysteinyl residues and (b) low concentrations of mercury or cadmium. We propose that binding of metal ions, most probably zinc, to conserved cysteinyl residues stabilizes the tertiary structure of wild-type p53.
Similar articles
- Sequence-specific interaction of a conformational domain of p53 with DNA.
Srinivasan R, Roth JA, Maxwell SA. Srinivasan R, et al. Cancer Res. 1993 Nov 15;53(22):5361-4. Cancer Res. 1993. PMID: 8221671 - Modulation by copper of p53 conformation and sequence-specific DNA binding: role for Cu(II)/Cu(I) redox mechanism.
Hainaut P, Rolley N, Davies M, Milner J. Hainaut P, et al. Oncogene. 1995 Jan 5;10(1):27-32. Oncogene. 1995. PMID: 7824276 - Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
Suad O, Rozenberg H, Brosh R, Diskin-Posner Y, Kessler N, Shimon LJ, Frolow F, Liran A, Rotter V, Shakked Z. Suad O, et al. J Mol Biol. 2009 Jan 9;385(1):249-65. doi: 10.1016/j.jmb.2008.10.063. Epub 2008 Oct 30. J Mol Biol. 2009. PMID: 18996393 - The role of tetramerization in p53 function.
Chène P. Chène P. Oncogene. 2001 May 10;20(21):2611-7. doi: 10.1038/sj.onc.1204373. Oncogene. 2001. PMID: 11420672 Review. - Reactivation of mutant p53: molecular mechanisms and therapeutic potential.
Selivanova G, Wiman KG. Selivanova G, et al. Oncogene. 2007 Apr 2;26(15):2243-54. doi: 10.1038/sj.onc.1210295. Oncogene. 2007. PMID: 17401433 Review.
Cited by
- Pharmacological reactivation of p53 in the era of precision anticancer medicine.
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Tuval A, et al. Nat Rev Clin Oncol. 2024 Feb;21(2):106-120. doi: 10.1038/s41571-023-00842-2. Epub 2023 Dec 15. Nat Rev Clin Oncol. 2024. PMID: 38102383 Review. - Potential role of p53 on metallothionein induction in human epithelial breast cancer cells.
Fan LZ, Cherian MG. Fan LZ, et al. Br J Cancer. 2002 Oct 21;87(9):1019-26. doi: 10.1038/sj.bjc.6600549. Br J Cancer. 2002. PMID: 12434295 Free PMC article. - Pharmacological targeting of mutant p53.
Kogan S, Carpizo D. Kogan S, et al. Transl Cancer Res. 2016 Dec;5(6):698-706. doi: 10.21037/tcr.2016.11.74. Transl Cancer Res. 2016. PMID: 30956950 Free PMC article. - Cadmium, carcinogen, co-carcinogen and anti carcinogen.
Chandra R, Dass SK, Tomar P, Tiwari M. Chandra R, et al. Indian J Clin Biochem. 2001 Jul;16(2):145-52. doi: 10.1007/BF02864853. Indian J Clin Biochem. 2001. PMID: 23105310 Free PMC article. - Pseudo-mutant P53 is a unique phenotype of _DNMT3A_-mutated pre-leukemia.
Tuval A, Brilon Y, Azogy H, Moskovitz Y, Leshkowitz D, Salame TM, Minden MD, Tal P, Rotter V, Oren M, Kaushansky N, Shlush LI. Tuval A, et al. Haematologica. 2022 Nov 1;107(11):2548-2561. doi: 10.3324/haematol.2021.280329. Haematologica. 2022. PMID: 35199506 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials
Miscellaneous