Characterization of a mutant cell line that does not activate NF-kappaB in response to multiple stimuli - PubMed (original) (raw)

Characterization of a mutant cell line that does not activate NF-kappaB in response to multiple stimuli

G Courtois et al. Mol Cell Biol. 1997 Mar.

Abstract

Numerous genes required during the immune or inflammation response as well as the adhesion process are regulated by nuclear factor kappaB (NF-kappaB). Associated with its inhibitor, I kappaB, NF-kappaB resides as an inactive form in the cytoplasm. Upon stimulation by various agents, I kappaB is proteolyzed and NF-kappaB translocates to the nucleus, where it activates its target genes. The transduction pathways that lead to I kappaB inactivation remain poorly understood. In this study, we have characterized a cellular mutant, the 70/Z3-derived 1.3E2 murine pre-B cell line, that does not activate NF-kappaB in response to several stimuli. We demonstrate that upon stimulation by lipopolysaccharide, Taxol, phorbol myristate acetate, interleukin-1, or double-stranded RNA, I kappaB alpha is not degraded, as a result of an absence of induced phosphorylation on serines 32 and 36. Neither a mutation in I kappaB alpha nor a mutation in p50 or relA, the two major subunits of NF-kappaB in this cell line, accounts for this phosphorylation defect. As well as culminating in the inducible phosphorylation of I kappaB alpha on serines 32 and 36, all the stimuli that are inactive on 1.3E2 cells exhibit a sensitivity to the antioxidant pyrrolidine dithiocarbamate (PDTC). In contrast, stimuli such as hyperosmotic shock or phosphatase inhibitors, which use PDTC-insensitive pathways, induce I kappaB alpha degradation in 1.3E2. Analysis of the redox status of 1.3E2 does not reveal any difference from wild-type 70Z/3. We also report that the human T-cell leukemia virus type 1 (HTLV-1)-derived Tax trans-activator induces NF-kappaB activity in 1.3E2, suggesting that this viral protein does not operate via the defective pathway. Finally, we show that two other I kappaB molecules, I kappaB beta and the recently identified I kappaB epsilon, are not degraded in the 1.3E2 cell line following stimulation. Our results demonstrate that 1.3E2 is a cellular transduction mutant exhibiting a defect in a step that is required by several different stimuli to activate NF-kappaB. In addition, this analysis suggests a common step in the signaling pathways that trigger I kappaB alpha, I kappaB beta, and I kappaB epsilon degradation.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9943-7 - PubMed
    1. Nature. 1988 Jun 23;333(6175):776-8 - PubMed
    1. Mol Cell Biol. 1995 Mar;15(3):1294-301 - PubMed
    1. Science. 1994 Aug 5;265(5173):808-11 - PubMed
    1. Genes Dev. 1995 Jul 1;9(13):1586-97 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources