Activation of prokaryotic transcription through arbitrary protein-protein contacts - PubMed (original) (raw)
. 1997 Apr 10;386(6625):627-30.
doi: 10.1038/386627a0.
Affiliations
- PMID: 9121589
- DOI: 10.1038/386627a0
Activation of prokaryotic transcription through arbitrary protein-protein contacts
S L Dove et al. Nature. 1997.
Abstract
Many transcriptional activators in prokaryotes are known to bind near a promoter and contact RNA polymerase, but it is not clear whether a protein-protein contact between an activator and RNA polymerase is enough to activate gene transcription. Here we show that contact between a DNA-bound protein and a heterologous protein domain fused to RNA polymerase can elicit transcriptional activation; moreover, the strength of this engineered protein-protein interaction determines the amount of gene activation. Our results indicate that an arbitrary interaction between a DNA-bound protein and RNA polymerase can activate transcription. We also find that when the DNA-bound 'activator' makes contact with two different components of the polymerase, the effect of these two interactions on transcription is synergistic.
Similar articles
- Synergistic activation of transcription by bacteriophage lambda cI protein and E. coli cAMP receptor protein.
Joung JK, Koepp DM, Hochschild A. Joung JK, et al. Science. 1994 Sep 23;265(5180):1863-6. doi: 10.1126/science.8091212. Science. 1994. PMID: 8091212 - Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target.
Dove SL, Hochschild A. Dove SL, et al. Genes Dev. 1998 Mar 1;12(5):745-54. doi: 10.1101/gad.12.5.745. Genes Dev. 1998. PMID: 9499408 Free PMC article. - DnaA-stimulated transcriptional activation of orilambda: Escherichia coli RNA polymerase beta subunit as a transcriptional activator contact site.
Szalewska-Pałasz A, Wegrzyn A, Błaszczak A, Taylor K, Wegrzyn G. Szalewska-Pałasz A, et al. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4241-6. doi: 10.1073/pnas.95.8.4241. Proc Natl Acad Sci U S A. 1998. PMID: 9539721 Free PMC article. - Transcriptional activation. How lambda repressor talks to RNA polymerase.
Hochschild A. Hochschild A. Curr Biol. 1994 May 1;4(5):440-2. doi: 10.1016/s0960-9822(00)00097-x. Curr Biol. 1994. PMID: 7922360 Review. - Protein-DNA recognition.
Pabo CO, Sauer RT. Pabo CO, et al. Annu Rev Biochem. 1984;53:293-321. doi: 10.1146/annurev.bi.53.070184.001453. Annu Rev Biochem. 1984. PMID: 6236744 Review.
Cited by
- Ubiquitous promoter-localization of essential virulence regulators in Francisella tularensis.
Ramsey KM, Osborne ML, Vvedenskaya IO, Su C, Nickels BE, Dove SL. Ramsey KM, et al. PLoS Pathog. 2015 Apr 1;11(4):e1004793. doi: 10.1371/journal.ppat.1004793. eCollection 2015 Apr. PLoS Pathog. 2015. PMID: 25830507 Free PMC article. - The influence of promoter architectures and regulatory motifs on gene expression in Escherichia coli.
Rydenfelt M, Garcia HG, Cox RS 3rd, Phillips R. Rydenfelt M, et al. PLoS One. 2014 Dec 30;9(12):e114347. doi: 10.1371/journal.pone.0114347. eCollection 2014. PLoS One. 2014. PMID: 25549361 Free PMC article. - Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis.
Weiss LA, Harrison PG, Nickels BE, Glickman MS, Campbell EA, Darst SA, Stallings CL. Weiss LA, et al. J Bacteriol. 2012 Oct;194(20):5621-31. doi: 10.1128/JB.00879-12. Epub 2012 Aug 17. J Bacteriol. 2012. PMID: 22904282 Free PMC article. - Influence of the Escherichia coli oxyR gene function on lambda prophage maintenance.
Glinkowska M, Loś JM, Szambowska A, Czyz A, Całkiewicz J, Herman-Antosiewicz A, Wróbel B, Wegrzyn G, Wegrzyn A, Loś M. Glinkowska M, et al. Arch Microbiol. 2010 Aug;192(8):673-83. doi: 10.1007/s00203-010-0596-2. Epub 2010 Jun 18. Arch Microbiol. 2010. PMID: 20559623 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials