Rearrangement reactions in the biosynthesis of molybdopterin--an NMR study with multiply 13C/15N labelled precursors - PubMed (original) (raw)
Rearrangement reactions in the biosynthesis of molybdopterin--an NMR study with multiply 13C/15N labelled precursors
C Rieder et al. Eur J Biochem. 1998.
Free article
Abstract
The genes moaABC of Escherichia coli were ligated into the expression vector pNCO113. The resulting plasmid was transformed into a moeA mutant of E. coli. From cultures of the recombinant strain, a pteridine designated compound Z could be isolated at 5 mg/liter. Compound Z is a product of precursor Z, a biosynthetic precursor of molybdopterin. Cultures of the recombinant E. coli strain were supplied with [U-(13)C6]glucose, [U-(13)C5]ribulose 5-phosphate, or [7-(15)N,8-(13)C]guanine. The culture medium also contained a large excess of unlabeled glucose. Compound Z as well as nucleosides obtained by hydrolysis of RNA were isolated from the bacterial cultures, and their heavy isotope distribution was investigated by one-dimensional and two-dimensional NMR spectroscopy. The labelling patterns of compound Z show that the carbon atoms of a pentose or pentulose are diverted to the ring atoms C6 and C7 and to the side chain atoms C2', C3' and C4' of compound Z. Carbon atom C1' of compound Z is derived from carbon atom C8 of a guanine derivative. The remodeling of the carbon skeleton of the pentose and purine moieties proceed via intramolecular rearrangement reactions.
Similar articles
- Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies.
Wuebbens MM, Rajagopalan KV. Wuebbens MM, et al. J Biol Chem. 1995 Jan 20;270(3):1082-7. doi: 10.1074/jbc.270.3.1082. J Biol Chem. 1995. PMID: 7836363 - Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle.
Thakur CS, Sama JN, Jackson ME, Chen B, Dayie TK. Thakur CS, et al. J Biomol NMR. 2010 Dec;48(4):179-92. doi: 10.1007/s10858-010-9454-4. Epub 2010 Nov 6. J Biomol NMR. 2010. PMID: 21057854 Free PMC article. - Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.
Sandu C, Brandsch R. Sandu C, et al. Arch Microbiol. 2002 Dec;178(6):465-70. doi: 10.1007/s00203-002-0474-7. Epub 2002 Sep 3. Arch Microbiol. 2002. PMID: 12420167 - Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.
Iobbi-Nivol C, Leimkühler S. Iobbi-Nivol C, et al. Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1086-101. doi: 10.1016/j.bbabio.2012.11.007. Epub 2012 Nov 29. Biochim Biophys Acta. 2013. PMID: 23201473 Review. - Molybdopterin biosynthesis-Mechanistic studies on a novel MoaA catalyzed insertion of a purine carbon into the ribose of GTP.
Mehta AP, Abdelwahed SH, Begley TP. Mehta AP, et al. Biochim Biophys Acta. 2015 Sep;1854(9):1073-7. doi: 10.1016/j.bbapap.2015.04.008. Epub 2015 Apr 17. Biochim Biophys Acta. 2015. PMID: 25896388 Free PMC article. Review.
Cited by
- Resolving the Multidecade-Long Mystery in MoaA Radical SAM Enzyme Reveals New Opportunities to Tackle Human Health Problems.
Yokoyama K, Li D, Pang H. Yokoyama K, et al. ACS Bio Med Chem Au. 2022 Apr 20;2(2):94-108. doi: 10.1021/acsbiomedchemau.1c00046. Epub 2021 Dec 13. ACS Bio Med Chem Au. 2022. PMID: 35480226 Free PMC article. Review. - The First Step of Neurospora crassa Molybdenum Cofactor Biosynthesis: Regulatory Aspects under N-Derepressing and Nitrate-Inducing Conditions.
Wajmann S, Hercher TW, Buchmeier S, Hänsch R, Mendel RR, Kruse T. Wajmann S, et al. Microorganisms. 2020 Apr 7;8(4):534. doi: 10.3390/microorganisms8040534. Microorganisms. 2020. PMID: 32272807 Free PMC article. - Lessons From the Studies of a CC Bond Forming Radical SAM Enzyme in Molybdenum Cofactor Biosynthesis.
Pang H, Yokoyama K. Pang H, et al. Methods Enzymol. 2018;606:485-522. doi: 10.1016/bs.mie.2018.04.014. Epub 2018 Jun 1. Methods Enzymol. 2018. PMID: 30097104 Free PMC article. - C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products.
Yokoyama K, Lilla EA. Yokoyama K, et al. Nat Prod Rep. 2018 Jul 18;35(7):660-694. doi: 10.1039/c8np00006a. Nat Prod Rep. 2018. PMID: 29633774 Free PMC article. Review. - Radical Breakthroughs in Natural Product and Cofactor Biosynthesis.
Yokoyama K. Yokoyama K. Biochemistry. 2018 Jan 30;57(4):390-402. doi: 10.1021/acs.biochem.7b00878. Epub 2017 Nov 9. Biochemistry. 2018. PMID: 29072833 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous