Wadah El-Nini | Sana'a University (original) (raw)

Related Authors

Tom Baum

Tom Baum

University of Strathclyde, Glasgow

Andrej Dujella

Akram AL ARISS

Viacheslav Kuleshov

muhammad faisal

Gürhan Uysal

Tâm Hữu

HO CHI MINH CITY UNIVERSITY OF INDUSTRY

Nevia Močinić

Adnan Awad

Uploads

Papers by Wadah El-Nini

Research paper thumbnail of A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science Part IX: Quasi-Ergodicity

International Journal of Bifurcation and Chaos, 2008

Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition ... more Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition of quasi-ergodicity, a new empirical property discovered by analyzing the time-1 return maps of local rules. Quasi-ergodicity plays a key role in the classification of rules into six groups: in fact, it is an exclusive characteristic of complex and hyper Bernoulli-shift rules. Besides introducing quasi-ergodicity, this paper answers several questions posed in the previous chapters of our quest. To start with, we offer a rigorous explanation of the fractal behavior of the time-1 characteristic functions, finding the equations that describe this phenomenon. Then, we propose a classification of rules according to the presence of Isles of Eden, and prove that only 28 local rules out of 256 do not have any of them; this result sheds light on the importance of Isles of Eden. A section of this paper is devoted to the characterization of Bernoulli basin-tree diagrams through modular arithmetic; ...

Research paper thumbnail of DIFFERENTIAL GEOMETRY AND MECHANICS: APPLICATIONS TO CHAOTIC DYNAMICAL SYSTEMS

The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics... more The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics concepts to chaotic dynamical systems study. Thus, the local metric properties of curvature and torsion will directly provide the analytical expression of the slow manifold equation of slow-fast autonomous dynamical systems starting from kinematics variables (velocity, acceleration and over-acceleration or jerk). The attractivity of the slow manifold will be characterized thanks to a criterion proposed by Henri Poincaré. Moreover, the specific use of acceleration will make it possible on the one hand to define slow and fast domains of the phase space and on the other hand, to provide an analytical equation of the slow manifold towards which all the trajectories converge. The attractive slow manifold constitutes a part of these dynamical systems attractor. So, in order to propose a description of the geometrical structure of attractor, a new manifold called singular manifold will be introduced. Various applications of this new approach to the models of Van der Pol, cubic-Chua, Lorenz, and Volterra-Gause are proposed.

Research paper thumbnail of A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science Part IX: Quasi-Ergodicity

International Journal of Bifurcation and Chaos, 2008

Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition ... more Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition of quasi-ergodicity, a new empirical property discovered by analyzing the time-1 return maps of local rules. Quasi-ergodicity plays a key role in the classification of rules into six groups: in fact, it is an exclusive characteristic of complex and hyper Bernoulli-shift rules. Besides introducing quasi-ergodicity, this paper answers several questions posed in the previous chapters of our quest. To start with, we offer a rigorous explanation of the fractal behavior of the time-1 characteristic functions, finding the equations that describe this phenomenon. Then, we propose a classification of rules according to the presence of Isles of Eden, and prove that only 28 local rules out of 256 do not have any of them; this result sheds light on the importance of Isles of Eden. A section of this paper is devoted to the characterization of Bernoulli basin-tree diagrams through modular arithmetic; ...

Research paper thumbnail of DIFFERENTIAL GEOMETRY AND MECHANICS: APPLICATIONS TO CHAOTIC DYNAMICAL SYSTEMS

The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics... more The aim of this article is to highlight the interest to apply Differential Geometry and Mechanics concepts to chaotic dynamical systems study. Thus, the local metric properties of curvature and torsion will directly provide the analytical expression of the slow manifold equation of slow-fast autonomous dynamical systems starting from kinematics variables (velocity, acceleration and over-acceleration or jerk). The attractivity of the slow manifold will be characterized thanks to a criterion proposed by Henri Poincaré. Moreover, the specific use of acceleration will make it possible on the one hand to define slow and fast domains of the phase space and on the other hand, to provide an analytical equation of the slow manifold towards which all the trajectories converge. The attractive slow manifold constitutes a part of these dynamical systems attractor. So, in order to propose a description of the geometrical structure of attractor, a new manifold called singular manifold will be introduced. Various applications of this new approach to the models of Van der Pol, cubic-Chua, Lorenz, and Volterra-Gause are proposed.

Log In