tf.histogram_fixed_width_bins | TensorFlow v2.16.1 (original) (raw)
Bins the given values for use in a histogram.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.histogram_fixed_width_bins
tf.histogram_fixed_width_bins(
values,
value_range,
nbins=100,
dtype=tf.dtypes.int32,
name=None
)
Given the tensor values, this operation returns a rank 1 Tensorrepresenting the indices of a histogram into which each element of values would be binned. The bins are equal width and determined by the arguments value_range and nbins.
| Args | |
|---|---|
| values | Numeric Tensor. |
| value_range | Shape [2] Tensor of same dtype as values. values <= value_range[0] will be mapped to hist[0], values >= value_range[1] will be mapped to hist[-1]. |
| nbins | Scalar int32 Tensor. Number of histogram bins. |
| dtype | dtype for returned histogram. |
| name | A name for this operation (defaults to 'histogram_fixed_width'). |
| Returns |
|---|
| A Tensor holding the indices of the binned values whose shape matchesvalues. |
| Raises | |
|---|---|
| TypeError | If any unsupported dtype is provided. |
| tf.errors.InvalidArgumentError | If value_range does not satisfy value_range[0] < value_range[1]. |
Examples:
# Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
``
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]
indices = tf.histogram_fixed_width_bins(new_values, value_range, nbins=5)
indices.numpy()
array([0, 0, 1, 2, 4, 4], dtype=int32)