tf.keras.losses.MAE  |  TensorFlow v2.16.1 (original) (raw)

Computes the mean absolute error between labels and predictions.

View aliases

Main aliases

tf.keras.losses.mae, tf.keras.metrics.MAE, tf.keras.metrics.mae

tf.keras.losses.MAE(
    y_true, y_pred
)

Used in the notebooks

Used in the tutorials
Intro to Autoencoders
loss = mean(abs(y_true - y_pred), axis=-1)
Args
y_true Ground truth values with shape = [batch_size, d0, .. dN].
y_pred The predicted values with shape = [batch_size, d0, .. dN].
Returns
Mean absolute error values with shape = [batch_size, d0, .. dN-1].

Example:

y_true = np.random.randint(0, 2, size=(2, 3)) y_pred = np.random.random(size=(2, 3)) loss = keras.losses.mean_absolute_error(y_true, y_pred)

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024-06-07 UTC.