tf.math.reduce_min | TensorFlow v2.16.1 (original) (raw)
Computes the tf.math.minimum of elements across dimensions of a tensor.
View aliases
Main aliases
tf.math.reduce_min(
input_tensor, axis=None, keepdims=False, name=None
)
Used in the notebooks
| Used in the guide | Used in the tutorials |
|---|---|
| Ragged tensors | Integrated gradients Intro to Autoencoders MoViNet for streaming action recognition TensorFlow Ranking Keras pipeline for distributed training |
This is the reduction operation for the elementwise tf.math.minimum op.
Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each of the entries in axis, which must be unique. If keepdims is true, the reduced dimensions are retained with length 1.
If axis is None, all dimensions are reduced, and a tensor with a single element is returned.
For example:
a = tf.constant([
[[1, 2], [3, 4]],
[[1, 2], [3, 4]]
])
tf.reduce_min(a)
<tf.Tensor: shape=(), dtype=int32, numpy=1>
Choosing a specific axis returns minimum element in the given axis:
b = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.reduce_min(b, axis=0)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 3], dtype=int32)>
tf.reduce_min(b, axis=1)
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([1, 4], dtype=int32)>
Setting keepdims to True retains the dimension of input_tensor:
tf.reduce_min(a, keepdims=True)
<tf.Tensor: shape=(1, 1, 1), dtype=int32, numpy=array([[[1]]], dtype=int32)>
tf.math.reduce_min(a, axis=0, keepdims=True)
<tf.Tensor: shape=(1, 2, 2), dtype=int32, numpy=
array([[[1, 2],
[3, 4]]], dtype=int32)>
| Args | |
|---|---|
| input_tensor | The tensor to reduce. Should have real numeric type. |
| axis | The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)). |
| keepdims | If true, retains reduced dimensions with length 1. |
| name | A name for the operation (optional). |
| Returns |
|---|
| The reduced tensor. |
numpy compatibility
Equivalent to np.min