tf.train.Features | TensorFlow v2.16.1 (original) (raw)
Used in tf.train.Example protos. Contains the mapping from keys to Feature.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
Used in the notebooks
An Example proto is a representation of the following python type:
Dict[str,
Union[List[bytes],
List[int64],
List[float]]]
This proto implements the Dict.
int_feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=[1, 2, 3, 4]))
float_feature = tf.train.Feature(
float_list=tf.train.FloatList(value=[1., 2., 3., 4.]))
bytes_feature = tf.train.Feature(
bytes_list=tf.train.BytesList(value=[b"abc", b"1234"]))
``
example = tf.train.Example(
features=tf.train.Features(feature={
'my_ints': int_feature,
'my_floats': float_feature,
'my_bytes': bytes_feature,
}))
Use tf.io.parse_example to extract tensors from a serialized Example proto:
tf.io.parse_example(
example.SerializeToString(),
features = {
'my_ints': tf.io.RaggedFeature(dtype=tf.int64),
'my_floats': tf.io.RaggedFeature(dtype=tf.float32),
'my_bytes': tf.io.RaggedFeature(dtype=tf.string)})
{'my_bytes': <tf.Tensor: shape=(2,), dtype=string,
numpy=array([b'abc', b'1234'], dtype=object)>,
'my_floats': <tf.Tensor: shape=(4,), dtype=float32,
numpy=array([1., 2., 3., 4.], dtype=float32)>,
'my_ints': <tf.Tensor: shape=(4,), dtype=int64,
numpy=array([1, 2, 3, 4])>}
| Attributes | |
|---|---|
| feature | repeated FeatureEntry feature |