Giovanni Ferraro | Università del Molise (original) (raw)
Uploads
Books by Giovanni Ferraro
The volumes published in the series are subjected to a peer review process which certifies their ... more The volumes published in the series are subjected to a peer review process which certifies their scientific validity.
Bernardino Baldi1 è una significativa figura di quella cultura rinascimentale in cui la passione ... more Bernardino Baldi1 è una significativa figura di quella cultura
rinascimentale in cui la passione per l’arte e la letteratura si
accompagnava con quella per la scienza e la tecnologia. Fu
poeta versatile, esperto di problemi linguistici e lessicali, raffinato
cultore di svariate lingue classiche e moderne, storico
delle matematiche, architetto, studioso di tecniche costruttive,
di apparati meccanici, di meccanica. La sua attività scientifica
si colloca nell’ambito di quella che è nota come “scuola di Urbino”,
iniziata da Federico Commandino (1509-1575), e che
ebbe un ruolo essenziale nel recupero della scienza antica e
nella sua assimilazione e divulgazione. Baldi partecipò attivamente
a tale processo che fu di recupero e di restaurazione ma
anche di analisi, di discussione, di riformulazione, di adeguamento
e che contribuì a creare l’ambiente culturale in cui la
scienza galileana prese le mosse....
Bernardino Baldi1 è una significativa figura di quella cultura rinascimentale in cui la passione ... more Bernardino Baldi1 è una significativa figura di quella cultura
rinascimentale in cui la passione per l’arte e la letteratura si
accompagnava con quella per la scienza e la tecnologia. Fu
poeta versatile, esperto di problemi linguistici e lessicali, raffinato
cultore di svariate lingue classiche e moderne, storico
delle matematiche, architetto, studioso di tecniche costruttive,
di apparati meccanici, di meccanica. La sua attività scientifica
si colloca nell’ambito di quella che è nota come “scuola di Urbino”,
iniziata da Federico Commandino (1509-1575), e che
ebbe un ruolo essenziale nel recupero della scienza antica e
nella sua assimilazione e divulgazione. Baldi partecipò attivamente
a tale processo che fu di recupero e di restaurazione ma
anche di analisi, di discussione, di riformulazione, di adeguamento
e che contribuì a creare l’ambiente culturale in cui la
scienza galileana prese le mosse. ....
Non p inutile qui ricordare che Vico lascid comunque cadere la possibiliti, sostenura da Doria, d... more Non p inutile qui ricordare che Vico lascid comunque cadere la possibiliti, sostenura da Doria, di una scientificiti "sinteticai e "metafuica" al fine di fondare la scienza sulla , veriti del', facere umano e sull'esame del processo storico. ' Come pu{e va osservato che il modello di scientificiti che 8 L'applicazione che Fergola fa dei mctt-rclo sintctico al Calcolo sublime, oltre ad essere dettata da motivazioni cf istemologiche, d, secondo noi, originata anche dal dcsiclcrio di compiere, portando in primo piano lc esigenze cliJattichc, o "didascaliche" come lui amava esprinrersi, un atto cli "puir 21 L-'lica utilita" di ispirazione illuministica. Con molta chiarezza. acl csempio, nel -I'rattato anahtico de' luoghi geometrici, dcl tBt9, Fergola dichiara di avere fatto ricorso a un metod,r chc "si vedra bcnanche esser didascaiico, non solo perch€ vi [io a<Jopcrate lc piu scrnplici e chiare operazioni, che ci prescnrruo la (icornetria e I'Analisi de' finiti; ma pcrchi ho r,,.lrrt<'r al mctodo tli Iluclide attenermi"lt. ll rnatematico napoletano attribuisce grandc importanza alla ruetodokrgia didattica in quanto ritiene che la Matematica abLria un valorc formativo, ovvero che essa educhi i eiovani al corretto uso delle loro facoltd intellettuali, sviluppando , ccrmc d scritto nella Prefhzione al Trattato anrtlitico delle t('zi.otli cc,niche del 1814, due "virtu dianoetiche", ciod I'arte cli dimostrare c quella rli inventare, la prima delle quali d "subordinata all'altra: poichc non si procede nel cammino de lle invenzioni, che co' passi delle dimosftazioni. Onde chi non c dimostratore, se c'liasi ad inventare, o nutla rinvienc o Lrrta nc sofismi"l(-. Pcr questi motivi Fergola ritiene neccssario "buone instituzioni", ciod trattati didatticamcnte efficaci i quaii illustrino brevcmente ma rigorosamente "i parti Jc' Sublirni Ingegni lche ] sovente si concepiscono men chiali rrcll'altrui mentc"l;. La necessiti di un'adeguata educazione dei giovani (c quincli cli fornirc loro trattati di elevato valore didattico) e ampiamente sentita a Napoli nella seconda meth del Scttecento: essa, prodotta dalla diffusione della cultura illuministica, va istituzionalmente inquadrata nell'ambito dei tentativi cli moclernizzazione dello stato napoletano compiuto dalla monarchia borbonical8. Ntrn bisogna certamente credere, come gii si d acccnnato, chc Nicolo Fcrgola {osse I'unico portatore di quelle istanzc di rigore teoretico e di idoneit) didattica relative all'Analisi sublirnc chc fin qui abbiamo cliscusso. In una lettera di Scbastiano Canterzanisegretario dell'Istituto dclle Scienze di l3ologna -, dcl 22 aprllc I778, a Vincenzo De Filippis, un l+ valente matematico napoletano, coetarreo del Fcrgola, tra l martiri della repressione borbonica seguita alla caduta clella Repubblica parienopea del 1799 (della qualc fu minisrrt-,r'" si legge:
Papers by Giovanni Ferraro
Handbook of the History and Philosophy of Mathematical Practice, 2020
The Mathematical Intelligencer
"Read Euler, read Euler. He is the master of all us". This famous exhortation, which Libri 1 ascr... more "Read Euler, read Euler. He is the master of all us". This famous exhortation, which Libri 1 ascribes to Laplace, expresses Euler's influence on eighteenthcentury mathematics very well. During his long and profitable activity Euler obtained an astonishing number of results, which were crucial in the development of mathematics and fill over 70 volumes of his Opera omnia 2 : they concern all parts of eighteenth-century mathematics-both pure and applied-, ranging from number theory, infinite series, the theory of equations, combinatorics and probability, the differential and integral calculus, elliptic integrals, the calculus of variations, musical harmony, mechanics, theory of machines, optics, astronomy, naval science, and much else besides. Thus, today, the name of Euler can found in the history of almost all the branches of mathematics, even in the history of those branches that did not yet exist in the eighteenth century but boast of Euler as an ancestor, such as graph theory. In this paper, however, my intention is not to deal with one or more of the many Eulerian results but to call attention on what I term as Euler's analytical program, namely Euler's attempts of transforming analysis into an autonomous discipline and reorganizing the whole of mathematics around analysis. The main aspects of this program can be summarized as follows:
The edition of the text of the Ga _ nitasārakaumud ı is based on that of the Nahatas referred to ... more The edition of the text of the Ga _ nitasārakaumud ı is based on that of the Nahatas referred to above. The manuscript discovered by the Nahatas is the only known manuscript of the text, but, unfortunately, its whereabouts are no longer known. SaKHYa therefore only had the Nahatas' edition available when producing their book, and, as a result, what we have is a revised version of the Nahatas' edition. The Nahatas' text has been emended, when deemed necessary for mathematical or other reasons, but the original readings have been preserved in footnotes. Furthermore, words have been separated independently of phonetic changes, which makes it easier to find a word in the text. The English translation presented in Part Three is literal and precise. The mathematical commentary in Part Four elaborates on the translation, contextualizing and explaining it. Finally, the appendices provide a concordance between the Ga _ nitasārakaumud ı and other works, a glossary-index to the text, and other useful tools. Overall, the volume is a wonderful contribution to the field of the history of mathematics in India. The text is carefully edited, the translation precise, and the mathematical commentary solid and informative. Moreover, the introduction puts the material in the appropriate historical context. As a result, the volume will be of value both to the specialist, who will want to consult the original text, as well as to a more casual reader, looking to learn more about mathematics in India in the 14th century. It is hoped that SaKHYa will continue their good work on Indian mathematics and that their collaboration will produce more volumes like the present one.
In this paper, I investigate some of the preliminary lemmas of Princip-ia and deal with two impor... more In this paper, I investigate some of the preliminary lemmas of Princip-ia and deal with two important aspects of Newton's mathematics: the method of first and last ratios and the role of figures in the mathemati-cal reasoning. In particular, I tackle the question of the relationship between the method of first and ultimate ratios and the modern theory of limits; then, I show that in Newton's mathematics, the figure continued to play one of the fundamental functions of the figure in Greek geometry: a part of the reasoning was unloaded on to it.
L'historiographie des mathematiques a souvent decrit Euler comme relativement peu soucieux de... more L'historiographie des mathematiques a souvent decrit Euler comme relativement peu soucieux de problemes de convergence. Ce point de vue a depuis peu ete remis en question. Le present travail, qui examine la position d'Euler face au probleme de la definition d'une somme, contribue a cette remise en question, en montrant toute la complexite de la conception eulerienne du role des criteres de convergence.
In this paper, I investigate some of the preliminary lemmas of Principia and deal with two import... more In this paper, I investigate some of the preliminary lemmas of Principia and deal with two important aspects of Newton’s mathematics: the method of first and last ratios and the role of figures in the mathematical reasoning. In particular, I tackle the question of the relationship between the method of first and ultimate ratios and the modern theory of limits; then, I show that in Newton’s mathematics, the figure continued to play one of the fundamental functions of the figure in Greek geometry: a part of the reasoning was unloaded on to it.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. FUNCTIONS, FUNCTIONAL RELATIONS AND THE LAWS OF CONTINUITY Giovanni Ferraro
The theory of series in the 17th and 18th centuries poses several interesting problems to histori... more The theory of series in the 17th and 18th centuries poses several interesting problems to historians. Most of the results derived from this time were derived using methods which would be found unacceptable today, and as a result, when one looks back to the theory of ...
The volumes published in the series are subjected to a peer review process which certifies their ... more The volumes published in the series are subjected to a peer review process which certifies their scientific validity.
Bernardino Baldi1 è una significativa figura di quella cultura rinascimentale in cui la passione ... more Bernardino Baldi1 è una significativa figura di quella cultura
rinascimentale in cui la passione per l’arte e la letteratura si
accompagnava con quella per la scienza e la tecnologia. Fu
poeta versatile, esperto di problemi linguistici e lessicali, raffinato
cultore di svariate lingue classiche e moderne, storico
delle matematiche, architetto, studioso di tecniche costruttive,
di apparati meccanici, di meccanica. La sua attività scientifica
si colloca nell’ambito di quella che è nota come “scuola di Urbino”,
iniziata da Federico Commandino (1509-1575), e che
ebbe un ruolo essenziale nel recupero della scienza antica e
nella sua assimilazione e divulgazione. Baldi partecipò attivamente
a tale processo che fu di recupero e di restaurazione ma
anche di analisi, di discussione, di riformulazione, di adeguamento
e che contribuì a creare l’ambiente culturale in cui la
scienza galileana prese le mosse....
Bernardino Baldi1 è una significativa figura di quella cultura rinascimentale in cui la passione ... more Bernardino Baldi1 è una significativa figura di quella cultura
rinascimentale in cui la passione per l’arte e la letteratura si
accompagnava con quella per la scienza e la tecnologia. Fu
poeta versatile, esperto di problemi linguistici e lessicali, raffinato
cultore di svariate lingue classiche e moderne, storico
delle matematiche, architetto, studioso di tecniche costruttive,
di apparati meccanici, di meccanica. La sua attività scientifica
si colloca nell’ambito di quella che è nota come “scuola di Urbino”,
iniziata da Federico Commandino (1509-1575), e che
ebbe un ruolo essenziale nel recupero della scienza antica e
nella sua assimilazione e divulgazione. Baldi partecipò attivamente
a tale processo che fu di recupero e di restaurazione ma
anche di analisi, di discussione, di riformulazione, di adeguamento
e che contribuì a creare l’ambiente culturale in cui la
scienza galileana prese le mosse. ....
Non p inutile qui ricordare che Vico lascid comunque cadere la possibiliti, sostenura da Doria, d... more Non p inutile qui ricordare che Vico lascid comunque cadere la possibiliti, sostenura da Doria, di una scientificiti "sinteticai e "metafuica" al fine di fondare la scienza sulla , veriti del', facere umano e sull'esame del processo storico. ' Come pu{e va osservato che il modello di scientificiti che 8 L'applicazione che Fergola fa dei mctt-rclo sintctico al Calcolo sublime, oltre ad essere dettata da motivazioni cf istemologiche, d, secondo noi, originata anche dal dcsiclcrio di compiere, portando in primo piano lc esigenze cliJattichc, o "didascaliche" come lui amava esprinrersi, un atto cli "puir 21 L-'lica utilita" di ispirazione illuministica. Con molta chiarezza. acl csempio, nel -I'rattato anahtico de' luoghi geometrici, dcl tBt9, Fergola dichiara di avere fatto ricorso a un metod,r chc "si vedra bcnanche esser didascaiico, non solo perch€ vi [io a<Jopcrate lc piu scrnplici e chiare operazioni, che ci prescnrruo la (icornetria e I'Analisi de' finiti; ma pcrchi ho r,,.lrrt<'r al mctodo tli Iluclide attenermi"lt. ll rnatematico napoletano attribuisce grandc importanza alla ruetodokrgia didattica in quanto ritiene che la Matematica abLria un valorc formativo, ovvero che essa educhi i eiovani al corretto uso delle loro facoltd intellettuali, sviluppando , ccrmc d scritto nella Prefhzione al Trattato anrtlitico delle t('zi.otli cc,niche del 1814, due "virtu dianoetiche", ciod I'arte cli dimostrare c quella rli inventare, la prima delle quali d "subordinata all'altra: poichc non si procede nel cammino de lle invenzioni, che co' passi delle dimosftazioni. Onde chi non c dimostratore, se c'liasi ad inventare, o nutla rinvienc o Lrrta nc sofismi"l(-. Pcr questi motivi Fergola ritiene neccssario "buone instituzioni", ciod trattati didatticamcnte efficaci i quaii illustrino brevcmente ma rigorosamente "i parti Jc' Sublirni Ingegni lche ] sovente si concepiscono men chiali rrcll'altrui mentc"l;. La necessiti di un'adeguata educazione dei giovani (c quincli cli fornirc loro trattati di elevato valore didattico) e ampiamente sentita a Napoli nella seconda meth del Scttecento: essa, prodotta dalla diffusione della cultura illuministica, va istituzionalmente inquadrata nell'ambito dei tentativi cli moclernizzazione dello stato napoletano compiuto dalla monarchia borbonical8. Ntrn bisogna certamente credere, come gii si d acccnnato, chc Nicolo Fcrgola {osse I'unico portatore di quelle istanzc di rigore teoretico e di idoneit) didattica relative all'Analisi sublirnc chc fin qui abbiamo cliscusso. In una lettera di Scbastiano Canterzanisegretario dell'Istituto dclle Scienze di l3ologna -, dcl 22 aprllc I778, a Vincenzo De Filippis, un l+ valente matematico napoletano, coetarreo del Fcrgola, tra l martiri della repressione borbonica seguita alla caduta clella Repubblica parienopea del 1799 (della qualc fu minisrrt-,r'" si legge:
Handbook of the History and Philosophy of Mathematical Practice, 2020
The Mathematical Intelligencer
"Read Euler, read Euler. He is the master of all us". This famous exhortation, which Libri 1 ascr... more "Read Euler, read Euler. He is the master of all us". This famous exhortation, which Libri 1 ascribes to Laplace, expresses Euler's influence on eighteenthcentury mathematics very well. During his long and profitable activity Euler obtained an astonishing number of results, which were crucial in the development of mathematics and fill over 70 volumes of his Opera omnia 2 : they concern all parts of eighteenth-century mathematics-both pure and applied-, ranging from number theory, infinite series, the theory of equations, combinatorics and probability, the differential and integral calculus, elliptic integrals, the calculus of variations, musical harmony, mechanics, theory of machines, optics, astronomy, naval science, and much else besides. Thus, today, the name of Euler can found in the history of almost all the branches of mathematics, even in the history of those branches that did not yet exist in the eighteenth century but boast of Euler as an ancestor, such as graph theory. In this paper, however, my intention is not to deal with one or more of the many Eulerian results but to call attention on what I term as Euler's analytical program, namely Euler's attempts of transforming analysis into an autonomous discipline and reorganizing the whole of mathematics around analysis. The main aspects of this program can be summarized as follows:
The edition of the text of the Ga _ nitasārakaumud ı is based on that of the Nahatas referred to ... more The edition of the text of the Ga _ nitasārakaumud ı is based on that of the Nahatas referred to above. The manuscript discovered by the Nahatas is the only known manuscript of the text, but, unfortunately, its whereabouts are no longer known. SaKHYa therefore only had the Nahatas' edition available when producing their book, and, as a result, what we have is a revised version of the Nahatas' edition. The Nahatas' text has been emended, when deemed necessary for mathematical or other reasons, but the original readings have been preserved in footnotes. Furthermore, words have been separated independently of phonetic changes, which makes it easier to find a word in the text. The English translation presented in Part Three is literal and precise. The mathematical commentary in Part Four elaborates on the translation, contextualizing and explaining it. Finally, the appendices provide a concordance between the Ga _ nitasārakaumud ı and other works, a glossary-index to the text, and other useful tools. Overall, the volume is a wonderful contribution to the field of the history of mathematics in India. The text is carefully edited, the translation precise, and the mathematical commentary solid and informative. Moreover, the introduction puts the material in the appropriate historical context. As a result, the volume will be of value both to the specialist, who will want to consult the original text, as well as to a more casual reader, looking to learn more about mathematics in India in the 14th century. It is hoped that SaKHYa will continue their good work on Indian mathematics and that their collaboration will produce more volumes like the present one.
In this paper, I investigate some of the preliminary lemmas of Princip-ia and deal with two impor... more In this paper, I investigate some of the preliminary lemmas of Princip-ia and deal with two important aspects of Newton's mathematics: the method of first and last ratios and the role of figures in the mathemati-cal reasoning. In particular, I tackle the question of the relationship between the method of first and ultimate ratios and the modern theory of limits; then, I show that in Newton's mathematics, the figure continued to play one of the fundamental functions of the figure in Greek geometry: a part of the reasoning was unloaded on to it.
L'historiographie des mathematiques a souvent decrit Euler comme relativement peu soucieux de... more L'historiographie des mathematiques a souvent decrit Euler comme relativement peu soucieux de problemes de convergence. Ce point de vue a depuis peu ete remis en question. Le present travail, qui examine la position d'Euler face au probleme de la definition d'une somme, contribue a cette remise en question, en montrant toute la complexite de la conception eulerienne du role des criteres de convergence.
In this paper, I investigate some of the preliminary lemmas of Principia and deal with two import... more In this paper, I investigate some of the preliminary lemmas of Principia and deal with two important aspects of Newton’s mathematics: the method of first and last ratios and the role of figures in the mathematical reasoning. In particular, I tackle the question of the relationship between the method of first and ultimate ratios and the modern theory of limits; then, I show that in Newton’s mathematics, the figure continued to play one of the fundamental functions of the figure in Greek geometry: a part of the reasoning was unloaded on to it.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. FUNCTIONS, FUNCTIONAL RELATIONS AND THE LAWS OF CONTINUITY Giovanni Ferraro
The theory of series in the 17th and 18th centuries poses several interesting problems to histori... more The theory of series in the 17th and 18th centuries poses several interesting problems to historians. Most of the results derived from this time were derived using methods which would be found unacceptable today, and as a result, when one looks back to the theory of ...
Archive for History of Exact Sciences, 2016
Computational Mathematics Theory Methods and Applications 2011 Isbn 978 1 60876 271 2 Pags 35 62, 2011
Bollettino Di Storia Delle Scienze Matematiche, 2008
Bollettino Di Storia Delle Scienze Matematiche, 1993
Archive For History of Exact Sciences, May 31, 1999