Simone Tosi - Profile on Academia.edu (original) (raw)
Papers by Simone Tosi
Science of The Total Environment, 2024
The global challenge to increase agricultural production goes along with the need of decreasing p... more The global challenge to increase agricultural production goes along with the need of decreasing pesticide risks. The European Union (EU) therefore evaluates and controls the risks posed by pesticides by regulating their authorisation through the science-based Risk Assessment process. Member States can however act in derogation to this process and grant the Emergency Authorisation (EA) of pesticides that are currently non-authorised. To protect the health of humans and the environment, Emergency Authorisations are only permitted in exceptional circumstances of agricultural emergency: their use should be limited (i.e., cannot exceed 120 days and one growing season) and concurrent research on alternative strategies must be enforced. Here, we assessed the impact of the Emergency Authorisations process to human and environmental health. Bees, bioindicators of environmental health, were used as model species. Our research demonstrates that i) Emergency Authorisations are widely used throughout EU Member States (annually granted Emergency Authorisations(min-max, 2017–2021) = 593–660); ii) 12 % of Emergency Authorisations granted the use of pesticides for longer than prescribed by EU regulations; iii) 37 % of Emergency Authorisations were repeatedly granted over time by the same Member State for the same agricultural purpose (i.e., to control the same pest on the same crop); iv) 21 % of Emergency Authorisations granted the use of Active Substances non-approved by risk assessment (EA-ASs Type3) which consequently contaminate the environment (44 % of environmental biomonitoring studies found EA-AS Type3) while being significantly more toxic to pollinators than regularly approved ASs. To facilitate the implementation of sustainable control strategies towards a safer environment for humans and other animals, we identified the most frequent agricultural emergencies and the key research needs. This first quantitative assessment of the Emergency Authorisation process unveils an enduring state of agricultural emergency that acts in derogation of the EU Regulation, leading to broad human, animal, and environmental implications.
La rete nazionale di monitoraggio apistico il progetto BeeNet
Chemosphere, 2019
Flupyradifurone (FPF, Sivanto®) is a new butenolide insecticide that, like the neonicotinoids, is... more Flupyradifurone (FPF, Sivanto®) is a new butenolide insecticide that, like the neonicotinoids, is a systemic nicotinic acetylcholine agonist (nAChR). However, FPF is considered bee-safe (according to standard Risk Assessment tests), and thus a potential solution to the adverse effects of other pesticides on beneficial insects. To date, no studies have examined the impact of nutritional stress (decreased food diversity and quality) and FPF exposure on bee health although both stressors can occur, especially around agricultural monocultures. We therefore tested the effects of a field-realistic FPF concentration (4 ppm, FPFdaily dose = 241 ± 4 ng/bee/day, 1/12 of LD50) and nutritional stress (nectar with low-sugar concentrations) on honey bee (Apis mellifera L.) mortality, food consumption, thermoregulation, flight success (unsuccessful vs. successful), and flight ability (duration, distance, velocity). Flight and thermoregulation are critical to colony health: bees fly to collect food and reproduce, and they thermoregulate to increase flight efficiency and to rear brood. We studied the effects across seasons because seasonality can influence bee sensitivity to environmental stress. We demonstrate that, depending upon season and nutritional stress, FPF can reduce bee survival (-14%), food consumption (-14%), thermoregulation (-4%, i.e. hypothermia), flight success (-19%), and increase flight velocity (+13%). Because pesticide exposure and nutritional stress can co-occur, we suggest that future studies and pesticide risk assessments consider both seasonality and nutritional stress when evaluating pesticide safety for bees.
Proceedings of the Royal Society B: Biological Sciences, 2019
The honeybee (Apis mellifera L.) is an important pollinator and a model for pesticide effects on ... more The honeybee (Apis mellifera L.) is an important pollinator and a model for pesticide effects on insect pollinators. The effects of agricultural pesticides on honeybee health have therefore raised concern. Bees can be exposed to multiple pesticides that may interact synergistically, amplifying their side effects. Attention has focused on neonicotinoid pesticides, but flupyradifur-one (FPF) is a novel butenolide insecticide that is also systemic and a nicotinic acetylcholine receptor (nAChR) agonist. We therefore tested the lethal and sublethal toxic effects of FPF over different seasons and worker types, and the interaction of FPF with a common SBI fungicide, propicona-zole. We provide the first demonstration of adverse synergistic effects on bee survival and behaviour (poor coordination, hyperactivity, apathy) even at FPF field-realistic doses (worst-case scenarios). Pesticide effects were significantly influenced by worker type and season. Foragers were consistently more susceptible to the pesticides (4-fold greater effect) than in-hive bees, and both worker types were more strongly affected by FPF in summer as compared with spring. Because risk assessment (RA) requires relatively limited tests that only marginally address bee behaviour and do not consider the influence of bee age and season, our results raise concerns about the safety of approved pesticides, including FPF. We suggest that pesticide RA also test for common chemical mixture synergies on behaviour and survival.
Scientific Reports, 2017
Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must w... more Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: −43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42–3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.
Proceedings of the Royal Society B: Biological Sciences, 2017
The honey bee is a major pollinator whose health is of global concern. Declines in bee health are... more The honey bee is a major pollinator whose health is of global concern. Declines in bee health are related to multiple factors, including resource quality and pesticide contamination. Intensive agricultural areas with crop monocultures potentially reduce the quality and quantity of available nutrients and expose bee foragers to pesticides. However, there is, to date, no evidence for syner-gistic effects between pesticides and nutritional stress in animals. The neonicotinoids clothianidin (CLO) and thiamethoxam (TMX) are common systemic pesticides that are used worldwide and found in nectar and pollen. We therefore tested if nutritional stress (limited access to nectar and access to nectar with low-sugar concentrations) and sublethal, field-realistic acute exposures to two neonicotinoids (CLO and TMX at 1/5 and 1/25 of LD 50) could alter bee survival, food consumption and haemolymph sugar levels. Bee survival was synergistically reduced by the combination of poor nutrition and pesticide exposure (250%). Nutritional and pesticide stressors reduced also food consumption (248%) and haemolymph levels of glucose (260%) and trehalose (227%). Our results provide the first demonstration that field-realistic nutritional stress and pesticide exposure can synergistically interact and cause significant harm to animal survival. These findings have implications for current pesticide risk assessment and pollinator protection.
Science of The Total Environment, 2018
Honey bee (Apis mellifera L.) health is compromised by complex interactions between multiple stre... more Honey bee (Apis mellifera L.) health is compromised by complex interactions between multiple stressors, among which pesticides play a major role. To better understand the extent of honey bee colonies' exposure to pesticides in time and space, we conducted a survey by collecting corbicular pollen from returning honey bee foragers in 53 Italian apiaries during the active beekeeping season of 3 subsequent years (2012–2014). Of 554 pollen samples analysed for pesticide residues, 62% contained at least one pesticide. The overall rate of multiresidual samples (38%) was higher than the rate of single pesticide samples (24%), reaching a maximum of 7 pesticides per sample (1%). Over 3years, 18 different pesticides were detected (10 fungicides and 8 insecticides) out of 66 analysed. Pesticide concentrations reached the level of concern for bee health (Hazard Quotient (HQ) higher than 1000) at least once in 13% of the apiaries and exceeded the thresholds of safety for human dietary intake (Acute Reference Dose (ARfD), the Acceptable Daily Intake (ADI), and the Maximum Residue Limit (MRL)) in 39% of the analysis. The pesticide which was most frequently detected was the insecticide chlorpyrifos (30% of the samples overall, exceeding ARfD, ADI, or MRL in 99% of the positive ones), followed by the fungicides mandipropamid (19%), metalaxyl (16%), spiroxamine (15%), and the neonicotinoid insecticide imidacloprid (12%). Imidacloprid had also the highest HQ level (5054, with 12% of its positive samples with HQ higher than 1000). This 3year survey provides further insights on the contamination caused by agricultural pesticide use on honey bee colonies. Bee-collected pollen is shown to be a valuable tool for environmental monitoring, and for the detection of illegal uses of pesticides.
Scientific Reports, 2017
Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decr... more Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decreases homing success in honey bees. Neonicotinoids can alter bee navigation, but we present the first evidence that neonicotinoid exposure alone can impair the physical ability of bees to fly. We tested the effects of acute or chronic exposure to thiamethoxam on the flight ability of foragers in flight mills. Within 1 h of consuming a single sublethal dose (1.34 ng/bee), foragers showed excitation and significantly increased flight duration (+78%) and distance (+72%). Chronic exposure significantly decreased flight duration (-54%), distance (-56%), and average velocity (-7%) after either one or two days of continuous exposure that resulted in bees ingesting field-relevant thiamethoxam daily doses of 1.96-2.90 ng/bee/day. These results provide the first demonstration that acute or chronic exposure to a neonicotinoid alone can significantly alter bee flight. Such exposure may impair foraging and homing, which are vital to normal colony function and ecosystem services.
Journal of Insect Physiology, 2016
Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcho... more Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2 ng/bee) on the thorax temperatures of foragers exposed to low (22 °C) and high (33 °C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their tho-rax temperature 1–2 h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60–90 min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5 min at 4 °C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with.
Journal of Apicultural Research, 2013
Modern agriculture often involves the use of pesticides to protect crops. These substances are ha... more Modern agriculture often involves the use of pesticides to protect crops. These substances are harmful to target organisms (pests and pathogens). Nevertheless, they can also damage non-target animals, such as pollinators and entomophagous arthropods. It is obvious that the undesirable side effects of pesticides on the environment should be reduced to a minimum. Western honey bees (Apis mellifera) are very important organisms from an agricultural perspective and are vulnerable to pesticide-induced impacts. They contribute actively to the pollination of cultivated crops and wild vegetation, making food production possible. Of course, since Apis mellifera occupies the same ecological niche as many other species of pollinators, the loss of honey bees caused by environmental pollutants suggests that other insects may experience a similar outcome. Because pesticides can harm honey bees and other pollinators, it is important to register pesticides that are as selective as possible. In this manuscript, we describe a selection of methods used for studying pesticide toxicity/selectiveness towards Apis mellifera. These methods may be used in risk assessment schemes and in scientific research aimed to explain acute and chronic effects of any target compound on Apis mellifera. methods for toxicology research in Apis mellifera. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. Journal of Apicultural Research 52(4): http://dx.
Toxicity of Spirotetramat on Solitary Bee Larvae, Osmia Cornuta (Hymenoptera: Megachilidae), in Laboratory Conditions
Journal of Apicultural Science, 2015
Julius Kuhn Archiv, Oct 2, 2012
Foraging bees perform daily 10 trips on average, lasting 30-80 min each. Thus, the nectar can be ... more Foraging bees perform daily 10 trips on average, lasting 30-80 min each. Thus, the nectar can be stored in the honey-bag even for about one hour before the return to the hive. In the presence of contaminated food, this is a quite long time of exposure. In fact, if the honey-bag's wall has chemical affinity for some or all pesticides, then direct active ingredient's absorption will occur in addition to the quantity ingested by the bee for its own requirements. Therefore, the foraging bees should be much more exposed to pesticides than their sisters in the beehive. To test this hypothesis, a new experimental method was created, in order to simulate the foraging activity in the laboratory. In a hoarding cage, two groups of bees are divided by a membrane that allows only trophallaxis between the two groups. Only one group (donors) can access the feeders, collect the food (sucrose solution) and transfer it to the other group (receivers). In a separate cage, the bees of a third group (autonomous) have to provide only for their own feeding. Donors and autonomous bees must be necessarily foragers, while receivers are younger bees. Finally, the mortalities of donors and autonomous bees are compared to determine the impact of foraging activity on the intoxication of foragers. This method was first applied in some demonstrations, in which the two pesticides clothianidin and fipronil were tested at sublethal doses. On one hand, the optimal exchange of food between donors and receivers was verified, confirming the technical validity of the method: it can function properly for at least 72 hours. On the other hand, the results show a significant difference between the mortalities of donors (higher) and autonomous bees (lower) fed with the two active ingredients.
Journal of Apicultural Research, 2013
Modern agriculture often involves the use of pesticides to protect crops. These substances are ha... more Modern agriculture often involves the use of pesticides to protect crops. These substances are harmful to target organisms (pests and pathogens). Nevertheless, they can also damage non-target animals, such as pollinators and entomophagous arthropods. It is obvious that the undesirable side effects of pesticides on the environment should be reduced to a minimum. Western honey bees (Apis mellifera) are very important organisms from an agricultural perspective and are vulnerable to pesticide-induced impacts. They contribute actively to the pollination of cultivated crops and wild vegetation, making food production possible. Of course, since Apis mellifera occupies the same ecological niche as many other species of pollinators, the loss of honey bees caused by environmental pollutants suggests that other insects may experience a similar outcome. Because pesticides can harm honey bees and other pollinators, it is important to register pesticides that are as selective as possible. In this manuscript, we describe a selection of methods used for studying pesticide toxicity/selectiveness towards Apis mellifera. These methods may be used in risk assessment schemes and in scientific research aimed to explain acute and chronic effects of any target compound on Apis mellifera. methods for toxicology research in Apis mellifera. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. Journal of Apicultural Research 52(4): http://dx.
Julius-Kühn- …, 2012
The official guidelines for the assessment of the risk of pesticides on honeybees are based on sp... more The official guidelines for the assessment of the risk of pesticides on honeybees are based on specific protocols. They contain the procedures that must be applied in order to make the results usable for the pesticide registration process. The described test ...
Journal of Apicultural Research, 2010
Adult honey bees (Apis mellifera) usually maintain colony brood rearing temperature between 34-35... more Adult honey bees (Apis mellifera) usually maintain colony brood rearing temperature between 34-35°C by thermoregulation. The brood may, however, also be subjected to suboptimal temperature. Here we investigated whether a decrease of brood rearing temperature may have effects on larval mortality, adult emergence, longevity, morphology and susceptibility to poisoning by pesticides (dimethoate). Using the in vitro rearing protocol of Aupinel (2005), we were able for the first time to control the brood temperature not only during the pupal stage but also during the larval stage. Honey bee larvae were reared in vitro at 35°C (optimal) and 33°C (suboptimal) from 12 h after hatching for 15 days. Dimethoate was tested by ingestion either on 4-day old larvae or on 7-day old adults. Our results showed that lower rearing temperature had no significant effects on larval mortality and adult emergence, but adult bee mortality was strongly affected. Moreover, adult workers emerging at 33°C were significantly more susceptible to dimethoate. Larval LD50 (48 h) was, however, 28 times higher at 33°C than at 35°C. The striking differences between larvae and adults may be explained by differential larval metabolism at 33°C and resulting slower active ingredient absorption. We conclude that adult honey bees reared at even slightly suboptimal brood temperature may be more susceptible to pesticide poisoning and be characterised by reduced longevity. Thus, low temperature brood rearing could be another stress factor for colonies.
Science of The Total Environment, 2024
The global challenge to increase agricultural production goes along with the need of decreasing p... more The global challenge to increase agricultural production goes along with the need of decreasing pesticide risks. The European Union (EU) therefore evaluates and controls the risks posed by pesticides by regulating their authorisation through the science-based Risk Assessment process. Member States can however act in derogation to this process and grant the Emergency Authorisation (EA) of pesticides that are currently non-authorised. To protect the health of humans and the environment, Emergency Authorisations are only permitted in exceptional circumstances of agricultural emergency: their use should be limited (i.e., cannot exceed 120 days and one growing season) and concurrent research on alternative strategies must be enforced. Here, we assessed the impact of the Emergency Authorisations process to human and environmental health. Bees, bioindicators of environmental health, were used as model species. Our research demonstrates that i) Emergency Authorisations are widely used throughout EU Member States (annually granted Emergency Authorisations(min-max, 2017–2021) = 593–660); ii) 12 % of Emergency Authorisations granted the use of pesticides for longer than prescribed by EU regulations; iii) 37 % of Emergency Authorisations were repeatedly granted over time by the same Member State for the same agricultural purpose (i.e., to control the same pest on the same crop); iv) 21 % of Emergency Authorisations granted the use of Active Substances non-approved by risk assessment (EA-ASs Type3) which consequently contaminate the environment (44 % of environmental biomonitoring studies found EA-AS Type3) while being significantly more toxic to pollinators than regularly approved ASs. To facilitate the implementation of sustainable control strategies towards a safer environment for humans and other animals, we identified the most frequent agricultural emergencies and the key research needs. This first quantitative assessment of the Emergency Authorisation process unveils an enduring state of agricultural emergency that acts in derogation of the EU Regulation, leading to broad human, animal, and environmental implications.
La rete nazionale di monitoraggio apistico il progetto BeeNet
Chemosphere, 2019
Flupyradifurone (FPF, Sivanto®) is a new butenolide insecticide that, like the neonicotinoids, is... more Flupyradifurone (FPF, Sivanto®) is a new butenolide insecticide that, like the neonicotinoids, is a systemic nicotinic acetylcholine agonist (nAChR). However, FPF is considered bee-safe (according to standard Risk Assessment tests), and thus a potential solution to the adverse effects of other pesticides on beneficial insects. To date, no studies have examined the impact of nutritional stress (decreased food diversity and quality) and FPF exposure on bee health although both stressors can occur, especially around agricultural monocultures. We therefore tested the effects of a field-realistic FPF concentration (4 ppm, FPFdaily dose = 241 ± 4 ng/bee/day, 1/12 of LD50) and nutritional stress (nectar with low-sugar concentrations) on honey bee (Apis mellifera L.) mortality, food consumption, thermoregulation, flight success (unsuccessful vs. successful), and flight ability (duration, distance, velocity). Flight and thermoregulation are critical to colony health: bees fly to collect food and reproduce, and they thermoregulate to increase flight efficiency and to rear brood. We studied the effects across seasons because seasonality can influence bee sensitivity to environmental stress. We demonstrate that, depending upon season and nutritional stress, FPF can reduce bee survival (-14%), food consumption (-14%), thermoregulation (-4%, i.e. hypothermia), flight success (-19%), and increase flight velocity (+13%). Because pesticide exposure and nutritional stress can co-occur, we suggest that future studies and pesticide risk assessments consider both seasonality and nutritional stress when evaluating pesticide safety for bees.
Proceedings of the Royal Society B: Biological Sciences, 2019
The honeybee (Apis mellifera L.) is an important pollinator and a model for pesticide effects on ... more The honeybee (Apis mellifera L.) is an important pollinator and a model for pesticide effects on insect pollinators. The effects of agricultural pesticides on honeybee health have therefore raised concern. Bees can be exposed to multiple pesticides that may interact synergistically, amplifying their side effects. Attention has focused on neonicotinoid pesticides, but flupyradifur-one (FPF) is a novel butenolide insecticide that is also systemic and a nicotinic acetylcholine receptor (nAChR) agonist. We therefore tested the lethal and sublethal toxic effects of FPF over different seasons and worker types, and the interaction of FPF with a common SBI fungicide, propicona-zole. We provide the first demonstration of adverse synergistic effects on bee survival and behaviour (poor coordination, hyperactivity, apathy) even at FPF field-realistic doses (worst-case scenarios). Pesticide effects were significantly influenced by worker type and season. Foragers were consistently more susceptible to the pesticides (4-fold greater effect) than in-hive bees, and both worker types were more strongly affected by FPF in summer as compared with spring. Because risk assessment (RA) requires relatively limited tests that only marginally address bee behaviour and do not consider the influence of bee age and season, our results raise concerns about the safety of approved pesticides, including FPF. We suggest that pesticide RA also test for common chemical mixture synergies on behaviour and survival.
Scientific Reports, 2017
Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must w... more Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: −43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42–3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.
Proceedings of the Royal Society B: Biological Sciences, 2017
The honey bee is a major pollinator whose health is of global concern. Declines in bee health are... more The honey bee is a major pollinator whose health is of global concern. Declines in bee health are related to multiple factors, including resource quality and pesticide contamination. Intensive agricultural areas with crop monocultures potentially reduce the quality and quantity of available nutrients and expose bee foragers to pesticides. However, there is, to date, no evidence for syner-gistic effects between pesticides and nutritional stress in animals. The neonicotinoids clothianidin (CLO) and thiamethoxam (TMX) are common systemic pesticides that are used worldwide and found in nectar and pollen. We therefore tested if nutritional stress (limited access to nectar and access to nectar with low-sugar concentrations) and sublethal, field-realistic acute exposures to two neonicotinoids (CLO and TMX at 1/5 and 1/25 of LD 50) could alter bee survival, food consumption and haemolymph sugar levels. Bee survival was synergistically reduced by the combination of poor nutrition and pesticide exposure (250%). Nutritional and pesticide stressors reduced also food consumption (248%) and haemolymph levels of glucose (260%) and trehalose (227%). Our results provide the first demonstration that field-realistic nutritional stress and pesticide exposure can synergistically interact and cause significant harm to animal survival. These findings have implications for current pesticide risk assessment and pollinator protection.
Science of The Total Environment, 2018
Honey bee (Apis mellifera L.) health is compromised by complex interactions between multiple stre... more Honey bee (Apis mellifera L.) health is compromised by complex interactions between multiple stressors, among which pesticides play a major role. To better understand the extent of honey bee colonies' exposure to pesticides in time and space, we conducted a survey by collecting corbicular pollen from returning honey bee foragers in 53 Italian apiaries during the active beekeeping season of 3 subsequent years (2012–2014). Of 554 pollen samples analysed for pesticide residues, 62% contained at least one pesticide. The overall rate of multiresidual samples (38%) was higher than the rate of single pesticide samples (24%), reaching a maximum of 7 pesticides per sample (1%). Over 3years, 18 different pesticides were detected (10 fungicides and 8 insecticides) out of 66 analysed. Pesticide concentrations reached the level of concern for bee health (Hazard Quotient (HQ) higher than 1000) at least once in 13% of the apiaries and exceeded the thresholds of safety for human dietary intake (Acute Reference Dose (ARfD), the Acceptable Daily Intake (ADI), and the Maximum Residue Limit (MRL)) in 39% of the analysis. The pesticide which was most frequently detected was the insecticide chlorpyrifos (30% of the samples overall, exceeding ARfD, ADI, or MRL in 99% of the positive ones), followed by the fungicides mandipropamid (19%), metalaxyl (16%), spiroxamine (15%), and the neonicotinoid insecticide imidacloprid (12%). Imidacloprid had also the highest HQ level (5054, with 12% of its positive samples with HQ higher than 1000). This 3year survey provides further insights on the contamination caused by agricultural pesticide use on honey bee colonies. Bee-collected pollen is shown to be a valuable tool for environmental monitoring, and for the detection of illegal uses of pesticides.
Scientific Reports, 2017
Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decr... more Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decreases homing success in honey bees. Neonicotinoids can alter bee navigation, but we present the first evidence that neonicotinoid exposure alone can impair the physical ability of bees to fly. We tested the effects of acute or chronic exposure to thiamethoxam on the flight ability of foragers in flight mills. Within 1 h of consuming a single sublethal dose (1.34 ng/bee), foragers showed excitation and significantly increased flight duration (+78%) and distance (+72%). Chronic exposure significantly decreased flight duration (-54%), distance (-56%), and average velocity (-7%) after either one or two days of continuous exposure that resulted in bees ingesting field-relevant thiamethoxam daily doses of 1.96-2.90 ng/bee/day. These results provide the first demonstration that acute or chronic exposure to a neonicotinoid alone can significantly alter bee flight. Such exposure may impair foraging and homing, which are vital to normal colony function and ecosystem services.
Journal of Insect Physiology, 2016
Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcho... more Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2 ng/bee) on the thorax temperatures of foragers exposed to low (22 °C) and high (33 °C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their tho-rax temperature 1–2 h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60–90 min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5 min at 4 °C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with.
Journal of Apicultural Research, 2013
Modern agriculture often involves the use of pesticides to protect crops. These substances are ha... more Modern agriculture often involves the use of pesticides to protect crops. These substances are harmful to target organisms (pests and pathogens). Nevertheless, they can also damage non-target animals, such as pollinators and entomophagous arthropods. It is obvious that the undesirable side effects of pesticides on the environment should be reduced to a minimum. Western honey bees (Apis mellifera) are very important organisms from an agricultural perspective and are vulnerable to pesticide-induced impacts. They contribute actively to the pollination of cultivated crops and wild vegetation, making food production possible. Of course, since Apis mellifera occupies the same ecological niche as many other species of pollinators, the loss of honey bees caused by environmental pollutants suggests that other insects may experience a similar outcome. Because pesticides can harm honey bees and other pollinators, it is important to register pesticides that are as selective as possible. In this manuscript, we describe a selection of methods used for studying pesticide toxicity/selectiveness towards Apis mellifera. These methods may be used in risk assessment schemes and in scientific research aimed to explain acute and chronic effects of any target compound on Apis mellifera. methods for toxicology research in Apis mellifera. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. Journal of Apicultural Research 52(4): http://dx.
Toxicity of Spirotetramat on Solitary Bee Larvae, Osmia Cornuta (Hymenoptera: Megachilidae), in Laboratory Conditions
Journal of Apicultural Science, 2015
Julius Kuhn Archiv, Oct 2, 2012
Foraging bees perform daily 10 trips on average, lasting 30-80 min each. Thus, the nectar can be ... more Foraging bees perform daily 10 trips on average, lasting 30-80 min each. Thus, the nectar can be stored in the honey-bag even for about one hour before the return to the hive. In the presence of contaminated food, this is a quite long time of exposure. In fact, if the honey-bag's wall has chemical affinity for some or all pesticides, then direct active ingredient's absorption will occur in addition to the quantity ingested by the bee for its own requirements. Therefore, the foraging bees should be much more exposed to pesticides than their sisters in the beehive. To test this hypothesis, a new experimental method was created, in order to simulate the foraging activity in the laboratory. In a hoarding cage, two groups of bees are divided by a membrane that allows only trophallaxis between the two groups. Only one group (donors) can access the feeders, collect the food (sucrose solution) and transfer it to the other group (receivers). In a separate cage, the bees of a third group (autonomous) have to provide only for their own feeding. Donors and autonomous bees must be necessarily foragers, while receivers are younger bees. Finally, the mortalities of donors and autonomous bees are compared to determine the impact of foraging activity on the intoxication of foragers. This method was first applied in some demonstrations, in which the two pesticides clothianidin and fipronil were tested at sublethal doses. On one hand, the optimal exchange of food between donors and receivers was verified, confirming the technical validity of the method: it can function properly for at least 72 hours. On the other hand, the results show a significant difference between the mortalities of donors (higher) and autonomous bees (lower) fed with the two active ingredients.
Journal of Apicultural Research, 2013
Modern agriculture often involves the use of pesticides to protect crops. These substances are ha... more Modern agriculture often involves the use of pesticides to protect crops. These substances are harmful to target organisms (pests and pathogens). Nevertheless, they can also damage non-target animals, such as pollinators and entomophagous arthropods. It is obvious that the undesirable side effects of pesticides on the environment should be reduced to a minimum. Western honey bees (Apis mellifera) are very important organisms from an agricultural perspective and are vulnerable to pesticide-induced impacts. They contribute actively to the pollination of cultivated crops and wild vegetation, making food production possible. Of course, since Apis mellifera occupies the same ecological niche as many other species of pollinators, the loss of honey bees caused by environmental pollutants suggests that other insects may experience a similar outcome. Because pesticides can harm honey bees and other pollinators, it is important to register pesticides that are as selective as possible. In this manuscript, we describe a selection of methods used for studying pesticide toxicity/selectiveness towards Apis mellifera. These methods may be used in risk assessment schemes and in scientific research aimed to explain acute and chronic effects of any target compound on Apis mellifera. methods for toxicology research in Apis mellifera. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. Journal of Apicultural Research 52(4): http://dx.
Julius-Kühn- …, 2012
The official guidelines for the assessment of the risk of pesticides on honeybees are based on sp... more The official guidelines for the assessment of the risk of pesticides on honeybees are based on specific protocols. They contain the procedures that must be applied in order to make the results usable for the pesticide registration process. The described test ...
Journal of Apicultural Research, 2010
Adult honey bees (Apis mellifera) usually maintain colony brood rearing temperature between 34-35... more Adult honey bees (Apis mellifera) usually maintain colony brood rearing temperature between 34-35°C by thermoregulation. The brood may, however, also be subjected to suboptimal temperature. Here we investigated whether a decrease of brood rearing temperature may have effects on larval mortality, adult emergence, longevity, morphology and susceptibility to poisoning by pesticides (dimethoate). Using the in vitro rearing protocol of Aupinel (2005), we were able for the first time to control the brood temperature not only during the pupal stage but also during the larval stage. Honey bee larvae were reared in vitro at 35°C (optimal) and 33°C (suboptimal) from 12 h after hatching for 15 days. Dimethoate was tested by ingestion either on 4-day old larvae or on 7-day old adults. Our results showed that lower rearing temperature had no significant effects on larval mortality and adult emergence, but adult bee mortality was strongly affected. Moreover, adult workers emerging at 33°C were significantly more susceptible to dimethoate. Larval LD50 (48 h) was, however, 28 times higher at 33°C than at 35°C. The striking differences between larvae and adults may be explained by differential larval metabolism at 33°C and resulting slower active ingredient absorption. We conclude that adult honey bees reared at even slightly suboptimal brood temperature may be more susceptible to pesticide poisoning and be characterised by reduced longevity. Thus, low temperature brood rearing could be another stress factor for colonies.