Alan Cochrane | University of Toronto (original) (raw)
Papers by Alan Cochrane
PLOS ONE, 2015
Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factor... more Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factors. In this report, we demonstrate that overexpression of either Tra2α or Tra2β results in a marked reduction in HIV-1 Gag/ Env expression, an effect associated with changes in HIV-1 RNA accumulation, altered viral splice site usage, and a block to export of HIV-1 genomic RNA. A natural isoform of Tra2β (Tra2ß3), lacking the N-terminal RS domain, also suppressed HIV-1 expression but had different effects on viral RNA processing. The functional differences between the Tra2β isoforms were also observed in the context of another RNA substrate indicating that these factors have distinct functions within the cell. Finally, we demonstrate that Tra2ß depletion results in a selective reduction in HIV-1 Env expression as well as an increase in multiply spliced viral RNA. Together, the findings indicate that Tra2α/β can play important roles in regulating HIV-1 RNA metabolism and expression.
Retrovirology
Background The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternati... more Background The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). Methods Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. Results The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 aff...
Viruses, 2020
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic thro... more The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HI...
Journal of Biological Chemistry, 1989
This manuscript describes a new method that enables direct analysis of viral particles in unproce... more This manuscript describes a new method that enables direct analysis of viral particles in unprocessed samples.Using an electrochemical readout method that requires no external reagents, we detect the SARS-CoV-2 virus in the saliva of infected patients.The approach relies on a molecular sensor tethered to the surface of a gold electrode that contains an antibody, specific to the targetof interest, which here is the SARS-CoV-2 S1 spike protein that is displayed on the viral capsule. The antibody is attached to the electrode using a negatively charged linker that is composed of DNA. When a positive potential is applied to the electrode, the sensor complex is attracted to the electrode surface. The kinetics of transport is measured using chronoamperometry and readout is possible based on the absense or precense of virus and its effect on the complex movevment on electrode surface.
ACS Synthetic Biology, 2019
The precise spatiotemporal regulation of protein synthesis is essential for many complex biologic... more The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-dependent translation initiation in a mechanistically defined manner.
Journal of Virology, 2016
The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complet... more The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. T...
Molecular and Cellular Biology, 1995
The requirement of human immunodeficiency virus type 1 to generate numerous proteins from a singl... more The requirement of human immunodeficiency virus type 1 to generate numerous proteins from a single primary transcript is met largely by the use of suboptimal splicing to generate over 30 mRNAs. To ensure that appropriate quantities of each protein are produced, there must be a signal(s) that controls the efficiency with which any particular splice site in the RNA is used. To identify this control element(s) and to understand how it operates to generate the splicing pattern observed, we have initially focused on the control of splicing of the tat-rev intron, which spans the majority of the env open reading frame. Previous analysis indicated that a suboptimal branchpoint and polypyridimine tract in this intron contribute to its suboptimal splicing (A. Staffa and A. Cochrane, J. Virol. 68:3071-3079, 1994). In this report, we identify two additional elements within the 3'-terminal exon, an exon-splicing enhancer (ESE) and an exon splicing silencer (ESS), that modulate the overall ef...
Science, 2015
Detecting Gramnegative bacteria Invariant molecules specific to different classes of microbes, bu... more Detecting Gramnegative bacteria Invariant molecules specific to different classes of microbes, but not expressed by eukaryotic cells, alert the immune system to a potential invader. Gaudet et al. identified one such molecule expressed by a variety of Gram-negative bacteria: the monosaccharide heptose-1,7-bisphosphate (HBP) (see the Perspective by Brubaker and Monack). HBP is an intermediate in the synthesis of lipopolysaccharide, a major component of bacterial cell walls. Rather than alerting the immune system through traditional pathogen detection pathways, such as Toll-like receptors, HBP signals through the host protein TIFA (TRAF-interacting protein with forkhead-associated domain), which activates both innate and adaptive immune responses to control the infection. Science , this issue p. 1251 ; see also p. 1207
The Journal of infectious diseases, Jan 23, 2014
Although clinical and experimental evidence indicates that female sex hormones and hormonal contr... more Although clinical and experimental evidence indicates that female sex hormones and hormonal contraceptives regulate susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, the underlying mechanism remains unknown. Genital epithelial cells (GECs) are the first cells to encounter HIV during sexual transmission and their interaction with HIV may determine the outcome of exposure. This is the first report that HIV uptake by GECs increased significantly in the presence of the hormonal contraceptive medroxyprogesterone acetate (MPA) and progesterone and that uptake occurred primarily via endocytosis. No productive infection was detected, but endocytosed virus was released into apical and basolateral compartments. Significantly higher viral transcytosis was observed in the presence of MPA. In GEC and T-cell cocultures, maximum viral replication in T cells was observed in the presence of MPA, which also broadly upregulated chemokine production by GECs. These results suggest...
PLoS ONE, 2011
To compare the effect of gonococcal co-infection on immortalized versus primary CD4 + T cells the... more To compare the effect of gonococcal co-infection on immortalized versus primary CD4 + T cells the Jurkat cell line or freshly isolated human CD4 + T cells were infected with the HIV-1 X4 strain NL4-3. These cells were exposed to whole gonococci, supernatants from gonococcal-infected PBMCs, or N. gonorrhoeae-induced cytokines at varying levels. Supernatants from gonococcal-infected PBMCs stimulated HIV-1 replication in Jurkat cells while effectively inhibiting HIV-1 replication in primary CD4 + T cells. ELISA-based analyses revealed that the gonococcal-induced supernatants contained high levels of proinflammatory cytokines that promote HIV-1 replication, as well as the HIV-inhibitory IFNa. While all the T cells responded to the HIV-stimulatory cytokines, albeit to differing degrees, the Jurkat cells were refractory to IFNa. Combined, these results indicate that N. gonorrhoeae elicits immune-modulating cytokines that both activate and inhibit HIV-production; the outcome of co-infection depending upon the balance between these opposing signals.
Retrovirology, 2009
Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 ... more Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 blocks HIV-1 structural protein synthesis and expands its activity to encompass Nef. Although the two studies propose different mechanisms for the responses observed, it is possible that a common activity is responsible. Understanding how this Sam68 mutant discriminates among the multiple viral mRNAs promises to reveal unique properties of HIV-1 RNA metabolism.
Proceedings of the National Academy of Sciences, 1990
A region of potential complex secondary structure within the human immunodeficiency virus env mRN... more A region of potential complex secondary structure within the human immunodeficiency virus env mRNA has been implicated in Rev-mediated export of viral structural mRNAs from the nucleus to the cytoplasm. By using an RNase protection gel-mobility-shift assay, we demonstrate that purified Rev protein forms a stable complex with this Rev-responsive RNA. RNAs with mutations designed to disrupt formation of a predicted stem structure no longer interact with Rev. However, Rev binding is restored upon annealing of the two complementary RNAs that make up the stem. These results suggest that direct interaction of Rev with the Rev-responsive element could facilitate transport of human immunodeficiency virus structural mRNAs from the nucleus to the cytoplasm.
Journal of Molecular Biology, 2009
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsi... more The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.
Journal of Biological Chemistry, 1997
…, 2009
Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 ... more Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 blocks HIV-1 structural protein synthesis and expands its activity to encompass Nef. Although the two studies propose different mechanisms for the responses observed, it is possible that a common activity is responsible. Understanding how this Sam68 mutant discriminates among the multiple viral mRNAs promises to reveal unique properties of HIV-1 RNA metabolism.
RNA Biology, 2009
Research has determined that different RNAs within the cell (mRNA, snRNA, rRNA, tRNA) use distinc... more Research has determined that different RNAs within the cell (mRNA, snRNA, rRNA, tRNA) use distinct pathways to facilitate their movement from the nucleus to the cytoplasm. But does the nature of the pathway used affect the metabolism of the RNA? Recent studies have begun to address this question by examining the regulation of similar mRNAs exported by different pathways. We summarize the observations from several groups indicating that, in the case of HIV-1 mRNAs, the export pathway has dramatic effects on sensitivity to a translational inhibitor as well as the fate of the encoded proteins. Given that the mRNAs do not differ in physical structure (5' cap, 3' poly A tail), these findings suggest that the export pathway generates a distinct RNP composition that dictates the fate of the mRNA. Recent results have begun to define the composition of the HIV-1 RNP and, in turn, further re-enforced the hypothesis that these viral mRNAs have very distinct fates in the cytoplasm.
The stimulation of chicks or embryos with estrogen results in transient, hepatic expression of th... more The stimulation of chicks or embryos with estrogen results in transient, hepatic expression of the vitellogenin gene, as well as long-term, propagatable alterations in the rapidity with which the gene can be reactivated. We examined the possibility that nuclear, type H estrogen-binding sites are involved in this long-term change in response characteristics. We demonstrate that the primary induction kinetics of type II sites in embryos and chicks correlated with the expression of the vitellogenin gene and that once their induction was triggered by estrogen, they accumulated, were propagated, and persisted for months after withdrawal of the hormone. We also show that their accumulation in the embryo was accompanied by prolonged expression of both the vitellogenin and very low-density apolipoprotein II genes, in the absence of elevated levels of type I receptor, and that the type II sites, like the classical receptor, appear to be preferentially associated with active or potentially active chromatin. Finally, we describe a regulatory mechanism, tested by computer modelling, that simulated the behavioral characteristics of these nuclear estrogen-binding sites and which may explain their role in mediating the long-term effects of estrogen.
PLOS Pathogens, 2020
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimul... more The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drugresistant strains of HIV-1 (IC 50 :~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by � 10-20%), gene expression (0.01-0.46% by � 2-5 fold), and protein abundance (0.02-0.34% by � 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/ Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host
PLOS ONE, 2015
Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factor... more Balanced processing of HIV-1 RNA is critical to virus replication and is regulated by host factors. In this report, we demonstrate that overexpression of either Tra2α or Tra2β results in a marked reduction in HIV-1 Gag/ Env expression, an effect associated with changes in HIV-1 RNA accumulation, altered viral splice site usage, and a block to export of HIV-1 genomic RNA. A natural isoform of Tra2β (Tra2ß3), lacking the N-terminal RS domain, also suppressed HIV-1 expression but had different effects on viral RNA processing. The functional differences between the Tra2β isoforms were also observed in the context of another RNA substrate indicating that these factors have distinct functions within the cell. Finally, we demonstrate that Tra2ß depletion results in a selective reduction in HIV-1 Env expression as well as an increase in multiply spliced viral RNA. Together, the findings indicate that Tra2α/β can play important roles in regulating HIV-1 RNA metabolism and expression.
Retrovirology
Background The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternati... more Background The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). Methods Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. Results The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 aff...
Viruses, 2020
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic thro... more The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HI...
Journal of Biological Chemistry, 1989
This manuscript describes a new method that enables direct analysis of viral particles in unproce... more This manuscript describes a new method that enables direct analysis of viral particles in unprocessed samples.Using an electrochemical readout method that requires no external reagents, we detect the SARS-CoV-2 virus in the saliva of infected patients.The approach relies on a molecular sensor tethered to the surface of a gold electrode that contains an antibody, specific to the targetof interest, which here is the SARS-CoV-2 S1 spike protein that is displayed on the viral capsule. The antibody is attached to the electrode using a negatively charged linker that is composed of DNA. When a positive potential is applied to the electrode, the sensor complex is attracted to the electrode surface. The kinetics of transport is measured using chronoamperometry and readout is possible based on the absense or precense of virus and its effect on the complex movevment on electrode surface.
ACS Synthetic Biology, 2019
The precise spatiotemporal regulation of protein synthesis is essential for many complex biologic... more The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-dependent translation initiation in a mechanistically defined manner.
Journal of Virology, 2016
The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complet... more The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. T...
Molecular and Cellular Biology, 1995
The requirement of human immunodeficiency virus type 1 to generate numerous proteins from a singl... more The requirement of human immunodeficiency virus type 1 to generate numerous proteins from a single primary transcript is met largely by the use of suboptimal splicing to generate over 30 mRNAs. To ensure that appropriate quantities of each protein are produced, there must be a signal(s) that controls the efficiency with which any particular splice site in the RNA is used. To identify this control element(s) and to understand how it operates to generate the splicing pattern observed, we have initially focused on the control of splicing of the tat-rev intron, which spans the majority of the env open reading frame. Previous analysis indicated that a suboptimal branchpoint and polypyridimine tract in this intron contribute to its suboptimal splicing (A. Staffa and A. Cochrane, J. Virol. 68:3071-3079, 1994). In this report, we identify two additional elements within the 3'-terminal exon, an exon-splicing enhancer (ESE) and an exon splicing silencer (ESS), that modulate the overall ef...
Science, 2015
Detecting Gramnegative bacteria Invariant molecules specific to different classes of microbes, bu... more Detecting Gramnegative bacteria Invariant molecules specific to different classes of microbes, but not expressed by eukaryotic cells, alert the immune system to a potential invader. Gaudet et al. identified one such molecule expressed by a variety of Gram-negative bacteria: the monosaccharide heptose-1,7-bisphosphate (HBP) (see the Perspective by Brubaker and Monack). HBP is an intermediate in the synthesis of lipopolysaccharide, a major component of bacterial cell walls. Rather than alerting the immune system through traditional pathogen detection pathways, such as Toll-like receptors, HBP signals through the host protein TIFA (TRAF-interacting protein with forkhead-associated domain), which activates both innate and adaptive immune responses to control the infection. Science , this issue p. 1251 ; see also p. 1207
The Journal of infectious diseases, Jan 23, 2014
Although clinical and experimental evidence indicates that female sex hormones and hormonal contr... more Although clinical and experimental evidence indicates that female sex hormones and hormonal contraceptives regulate susceptibility to human immunodeficiency virus type 1 (HIV-1) infection, the underlying mechanism remains unknown. Genital epithelial cells (GECs) are the first cells to encounter HIV during sexual transmission and their interaction with HIV may determine the outcome of exposure. This is the first report that HIV uptake by GECs increased significantly in the presence of the hormonal contraceptive medroxyprogesterone acetate (MPA) and progesterone and that uptake occurred primarily via endocytosis. No productive infection was detected, but endocytosed virus was released into apical and basolateral compartments. Significantly higher viral transcytosis was observed in the presence of MPA. In GEC and T-cell cocultures, maximum viral replication in T cells was observed in the presence of MPA, which also broadly upregulated chemokine production by GECs. These results suggest...
PLoS ONE, 2011
To compare the effect of gonococcal co-infection on immortalized versus primary CD4 + T cells the... more To compare the effect of gonococcal co-infection on immortalized versus primary CD4 + T cells the Jurkat cell line or freshly isolated human CD4 + T cells were infected with the HIV-1 X4 strain NL4-3. These cells were exposed to whole gonococci, supernatants from gonococcal-infected PBMCs, or N. gonorrhoeae-induced cytokines at varying levels. Supernatants from gonococcal-infected PBMCs stimulated HIV-1 replication in Jurkat cells while effectively inhibiting HIV-1 replication in primary CD4 + T cells. ELISA-based analyses revealed that the gonococcal-induced supernatants contained high levels of proinflammatory cytokines that promote HIV-1 replication, as well as the HIV-inhibitory IFNa. While all the T cells responded to the HIV-stimulatory cytokines, albeit to differing degrees, the Jurkat cells were refractory to IFNa. Combined, these results indicate that N. gonorrhoeae elicits immune-modulating cytokines that both activate and inhibit HIV-production; the outcome of co-infection depending upon the balance between these opposing signals.
Retrovirology, 2009
Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 ... more Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 blocks HIV-1 structural protein synthesis and expands its activity to encompass Nef. Although the two studies propose different mechanisms for the responses observed, it is possible that a common activity is responsible. Understanding how this Sam68 mutant discriminates among the multiple viral mRNAs promises to reveal unique properties of HIV-1 RNA metabolism.
Proceedings of the National Academy of Sciences, 1990
A region of potential complex secondary structure within the human immunodeficiency virus env mRN... more A region of potential complex secondary structure within the human immunodeficiency virus env mRNA has been implicated in Rev-mediated export of viral structural mRNAs from the nucleus to the cytoplasm. By using an RNase protection gel-mobility-shift assay, we demonstrate that purified Rev protein forms a stable complex with this Rev-responsive RNA. RNAs with mutations designed to disrupt formation of a predicted stem structure no longer interact with Rev. However, Rev binding is restored upon annealing of the two complementary RNAs that make up the stem. These results suggest that direct interaction of Rev with the Rev-responsive element could facilitate transport of human immunodeficiency virus structural mRNAs from the nucleus to the cytoplasm.
Journal of Molecular Biology, 2009
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsi... more The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.
Journal of Biological Chemistry, 1997
…, 2009
Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 ... more Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 blocks HIV-1 structural protein synthesis and expands its activity to encompass Nef. Although the two studies propose different mechanisms for the responses observed, it is possible that a common activity is responsible. Understanding how this Sam68 mutant discriminates among the multiple viral mRNAs promises to reveal unique properties of HIV-1 RNA metabolism.
RNA Biology, 2009
Research has determined that different RNAs within the cell (mRNA, snRNA, rRNA, tRNA) use distinc... more Research has determined that different RNAs within the cell (mRNA, snRNA, rRNA, tRNA) use distinct pathways to facilitate their movement from the nucleus to the cytoplasm. But does the nature of the pathway used affect the metabolism of the RNA? Recent studies have begun to address this question by examining the regulation of similar mRNAs exported by different pathways. We summarize the observations from several groups indicating that, in the case of HIV-1 mRNAs, the export pathway has dramatic effects on sensitivity to a translational inhibitor as well as the fate of the encoded proteins. Given that the mRNAs do not differ in physical structure (5' cap, 3' poly A tail), these findings suggest that the export pathway generates a distinct RNP composition that dictates the fate of the mRNA. Recent results have begun to define the composition of the HIV-1 RNP and, in turn, further re-enforced the hypothesis that these viral mRNAs have very distinct fates in the cytoplasm.
The stimulation of chicks or embryos with estrogen results in transient, hepatic expression of th... more The stimulation of chicks or embryos with estrogen results in transient, hepatic expression of the vitellogenin gene, as well as long-term, propagatable alterations in the rapidity with which the gene can be reactivated. We examined the possibility that nuclear, type H estrogen-binding sites are involved in this long-term change in response characteristics. We demonstrate that the primary induction kinetics of type II sites in embryos and chicks correlated with the expression of the vitellogenin gene and that once their induction was triggered by estrogen, they accumulated, were propagated, and persisted for months after withdrawal of the hormone. We also show that their accumulation in the embryo was accompanied by prolonged expression of both the vitellogenin and very low-density apolipoprotein II genes, in the absence of elevated levels of type I receptor, and that the type II sites, like the classical receptor, appear to be preferentially associated with active or potentially active chromatin. Finally, we describe a regulatory mechanism, tested by computer modelling, that simulated the behavioral characteristics of these nuclear estrogen-binding sites and which may explain their role in mediating the long-term effects of estrogen.
PLOS Pathogens, 2020
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimul... more The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drugresistant strains of HIV-1 (IC 50 :~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by � 10-20%), gene expression (0.01-0.46% by � 2-5 fold), and protein abundance (0.02-0.34% by � 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/ Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host