CDP1—A Data Concentrator Prototype for the Deep Underground Neutrino Experiment (original) (raw)
Related papers
Cold Electronics Development for the LBNE LAr TPC
Physics Procedia, 2012
The LBNE Project is developing a design for multiple 20 kiloton liquid argon (LAr) time projection chambers to be used as the far detector for the Long Baseline Neutrino Experiment. An essential component of this design is a complete electronic readout system designed to operate in LAr (at 90K). This system is being implemented as a CMOS ASIC, in 180 nm commercial technology, that will provide low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MS/s, zero-suppression, buffering and output multiplexing to a small number of cryostat feed-throughs. A resolution better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power (<15mW/channel) and operation in LAr with a lifetime greater than 15 years. An analog-only frontend has been successfully completed and fully evaluated, and will be used in the MicroBooNE LAr TPC. A prototype of the digital section has been fabricated and is being evaluated. The results demonstrate that CMOS transistors have lower noise and much improved dc characteristics at LAr temperature. We will describe the progress to date and plans for the remaining development.
Journal of Instrumentation, 2021
The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) underwent a major overhaul at CERN in 2016-2017 to prepare for the operation at FNAL in the Short Baseline Neutrino (SBN) program. This included a major upgrade of the photo-multiplier system and of the TPC wire read-out electronics. The full TPC wire read-out electronics together with the new wire biasing and interconnection scheme are described. The design of a new signal feed-through flange is also a fundamental piece of this overhaul whose major feature is the integration of all electronics components onto the signal flange. Initial functionality tests of the full TPC electronics chain installed in the T600 detector at FNAL are also described.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013
The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton magnetized Iron Calorimeter (ICAL) detector with the primary goal to study neutrino oscillations, employing Resistive Plate Chambers (RPCs) as active detector elements. A prototype of the ICAL detector has been built in order to develop and characterize the intrinsic sub-systems, like RPCs, gas system, electronics and data acquisition system, etc. This paper describes in detail the readout electronics as well as the VME-based data acquisition system for the prototype detector.
Digital optical module and system design for km-scale neutrino detector in ice
New Astronomy Reviews, 1998
general electronic engineering approach for a km-scale high-energy neutrino ice Cerenkov detector is described. The scope includes both electronic circuitry for processing signals from the large photomultiplier tubes (PMT) and system architecture. The general performance goal is the capture of PMT waveform information of high dynamic range with .1 ns timing accuracy. The system concept is an all-digital approach with copper-based links. The architecture is intended to provide high quality data, simple connectivity, low operating power, ease of deployment, and low construction cost, as well as a modern networking interface.
EPJ Web of Conferences, 2016
GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype. This study was performed for the GRBNeT Project, funded by the THALIS Program of the Greek Ministry of Education and Religious Affairs (MIS 360381).
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008
The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.
The Autonomous, Low-Power Data Acquisition System for the ARIANNA Antarctic Neutrino Detector Array
The ARIANNA experiment will observe high-energy cosmogenic neutrino signatures via a large array of autonomous radio listening stations dispersed on the Ross Ice Shelf in Antarctica. Each station in the projected array of 900 stations will contain RF antennas, amplifiers, digitization and real-time triggering circuitry, a CPU with solid-state data storage, and redundant communications paths. Power is provided by both sun and wind. Two prototype stations have been installed, with a hexagonal array of seven stations, with each station 1 km apart, due for deployment over the next two seasons.
Cryogenic applications of commercial electronic components
Cryogenics, 2012
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG l and in the GISM0 2 camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
A space-qualified experiment integrating HTS digital circuits and small cryocoolers
IEEE Transactions on Microwave Theory and Techniques, 1996
Abstruct-High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, we need to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-11) [l]. Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data.
Reliability studies of application specific integrated circuits operated at cryogenic temperature
Review of Progress in Quantitative Nondestructive Evaluation, 2019
Cold electronics has become a key technology in many areas of science and technology including space exploration programs and particle physics. A major experiment with a very large number of analog and digital electronics signal processing channels to be operated at cryogenic temperatures is the next generation neutrino experiment, the Deep Underground Neutrino Experiment (DUNE). The DUNE detector uses liquid Argon at 87K as a target material for neutrinos. The DUNE electronics [1] consists of custom-designed ASIC (Application Specific Integrated Circuits) chips based on low power 180 nm-CMOS technology. The main risk for this technology is that the electronics components will be immersed in liquid argon for many years (20-30 years) without access. Reliability issues of ASICs may arise from thermal stress, packaging and manufacturing related defects: if undetected those could lead to long-term reliability and performance problems. The scope of this paper is to explore non-destructive evaluation techniques for their potential use in a comprehensive quality control process for during prototyping, testing and commissioning of the DUNE cold electronics system.