Mechanism of Meropenem Hydrolysis by New Delhi Metallo β-Lactamase (original) (raw)

Theoretical studies of the hydrolysis of antibiotics catalyzed by a metallo-β-lactamase

Silvia Castillo

Archives of Biochemistry and Biophysics, 2015

View PDFchevron_right

Structure-based computational study of the hydrolysis of New Delhi metallo-β-lactmase-1

Lu Jin

Biochemical and Biophysical Research Communications, 2013

View PDFchevron_right

Molecular dynamics and quantum mechanical calculations on the mononuclear zinc-β-lactamase from Bacillus cereus: Protonation state of the active site and imipenem binding

Natalia Díaz

Journal of Molecular Structure: THEOCHEM, 2009

View PDFchevron_right

Quantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View

Mina Ghiasi

Physical Chemistry Research, 2017

View PDFchevron_right

Insights into the Acylation Mechanism of Class A β-Lactamases from Molecular Dynamics Simulations of the TEM1 Enzyme Complexed with Benzylpenicillin

Natalia Diaz

Journal of The American Chemical Society, 2003

View PDFchevron_right

Molecular dynamics simulations of the dinuclear zinc-β-lactamase from Bacteroides fragilis complexed with imipenem

Natalia Diaz

Journal of Computational Chemistry, 2002

View PDFchevron_right

Asp120Asn mutation impairs the catalytic activity of NDM-1 metallo-β-lactamase: experimental and computational study

Fan Zhang

Physical Chemistry Chemical Physics, 2014

View PDFchevron_right

Insight into the mechanism of the IMP-1 metallo- -lactamase by molecular dynamics simulations

Rolf Schmid

Protein Engineering Design and Selection, 2003

View PDFchevron_right

Trapping and Characterization of a Reaction Intermediate in Carbapenem Hydrolysis by B. cereus Metallo-β-lactamase

Ernesto Mata

Journal of the American Chemical Society, 2008

View PDFchevron_right

Exploring the role of L209 residue in the active site of NDM-1 a metallo-β-lactamase

Gianfranco Amicosante

PLOS ONE, 2018

View PDFchevron_right

Molecular dynamics simulations of the dinuclear zinc--lactamase from Bacteroides fragilis complexed with imipenem

Natalia Diaz

Journal of Computational Chemistry, 2002

View PDFchevron_right

Molecular dynamics simulation in aqueous solution of N -methylazetidinone as a model of β -lactam antibiotics

Juan Luis Pascual-Ahuir

Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 1999

View PDFchevron_right

Theoretical Calculations of β-Lactam Antibiotics. Part VII. Influence of the solvent on the basic hydrolysis of the β-lactam ring

Josefa Donoso

Helvetica Chimica Acta, 1996

View PDFchevron_right

Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism

Graciela Mahler

Biomolecules, 2020

View PDFchevron_right

Theoretical calculations of β-lactam antibiotics. III. AM1, MNDO, and MINDO/3 calculations of hydrolysis of β-lactam compound (azetidin-2-one ring)

Josefa Donoso

Journal of Computational Chemistry, 1992

View PDFchevron_right

Structure of Apo- and Monometalated Forms of NDM-1—A Highly Potent Carbapenem-Hydrolyzing Metallo-β-Lactamase

Gyorgy Babnigg

PLoS ONE, 2011

View PDFchevron_right

Biapenem Inactivation by B2 Metallo β-Lactamases: Energy Landscape of the Hydrolysis Reaction

Domenico Gatti

PLoS ONE, 2013

View PDFchevron_right

Benchmark studies of hydrogen bond governing reactivity of cephalosporins in L1 metallo‐β‐lactamase: Efficient and reliable QSPR equations

Vladimir Tsirelson

International Journal of Quantum Chemistry, 2020

View PDFchevron_right

Mechanism of Acyl–Enzyme Complex Formation from the Henry–Michaelis Complex of Class C β-Lactamases with β-Lactam Antibiotics

ravi tripathi

Journal of the American Chemical Society, 2013

View PDFchevron_right

The N···H hydrogen bond strength in the transition state at the limiting step determines the reactivity of cephalosporins in the active site of L1 metallo-β-lactamase

Vladimir Tsirelson

Mendeleev Communications, 2019

View PDFchevron_right

Covalent docking and molecular dynamics simulations reveal the specificity-shifting mutations Ala237Arg and Ala237Lys in TEM beta-lactamase

Brenda Rubenstein

PLOS Computational Biology, 2022

View PDFchevron_right

Molecular Dynamics Simulations of the TEM-1 β-Lactamase Complexed with Cephalothin

Natalia Diaz

Journal of Medicinal Chemistry, 2005

View PDFchevron_right

Role of Zinc Content on the Catalytic Efficiency of B1 Metallo β-Lactamases

Michael Klein

Journal of the American Chemical Society, 2007

View PDFchevron_right

ChemInform Abstract: Theoretical Calculations of β-Lactam Antibiotics. Part 7. Influence of the Solvent on the Basic Hydrolysis of the β-Lactam Ring

J. Frau, Josefa Donoso

ChemInform, 1996

View PDFchevron_right

Zinc Metallo-β-Lactamase from Bacteroides fragilis : A Quantum Chemical Study on Model Systems of the Active Site

Natalia Diaz

Journal of The American Chemical Society, 2000

View PDFchevron_right

Ab Initio Calculations on Neutral and Alkaline Hydrolyses of β-Lactam Antibiotics. A Theoretical Study Including Solvent Effects

Juan Luis Pascual-Ahuir

The Journal of Physical Chemistry B, 1997

View PDFchevron_right

Modelling nucleophilic attack on β-lactam antibiotics. A PM3 study

Alfonso Hernandez-Laguna

Journal of Molecular Structure-theochem, 1993

View PDFchevron_right

Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-β-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry

Jean-Philip Piquemal

Journal of Computational Chemistry, 2005

View PDFchevron_right

Mechanism and Kinetics of Aztreonam Hydrolysis Catalyzed by Class-C β-Lactamase: A Temperature-Accelerated Sliced Sampling Study

ravi tripathi

The journal of physical chemistry. B, 2018

View PDFchevron_right

Theoretical Study of the Alkaline Hydrolysis of a Bicyclic Aza-β-lactam

Josefa Donoso

The Journal of Physical Chemistry B, 2000

View PDFchevron_right

Revealing electronic features governing hydrolysis of cephalosporins in the active site of the L1 metallo-β-lactamase

Vladimir Tsirelson

RSC Advances, 2020

View PDFchevron_right

Overcoming differences: The catalytic mechanism of metallo-β-lactamases

María Rocío Meini

FEBS Letters, 2015

View PDFchevron_right

Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation

Pradipta Bandyopadhyay

Journal of Molecular Modeling, 2012

View PDFchevron_right

Kinetic Studies of Metallo - β - Lactamase NDM - 1

Manu Chaudhary

View PDFchevron_right