The Fractional Analysis of a Nonlinear mKdV Equation with Caputo Operator (original) (raw)
Related papers
Fractal and Fractional
The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical ou...
Axioms
This article investigates the seventh-order Lax’s Korteweg–de Vries equation using the Yang transform decomposition method (YTDM) and the homotopy perturbation transform method (HPTM). The physical phenomena that emerge in physics, engineering and chemistry are mathematically expressed by this equation. For instance, the KdV equation was constructed to represent a wide range of physical processes involving the evolution and interaction of nonlinear waves. In the Caputo sense, the fractional derivative is considered. We employed the Yang transform, the Adomian decomposition method and the homotopy perturbation method to obtain the solution to the time-fractional Lax’s Korteweg–de Vries problem. We examined and compared a particular example with the actual result to verify the approaches. By utilizing these methods, we can construct recurrence relations that represent the solution to the problem that is being proposed, and we are then able to present graphical representations that ena...
Novel Analysis of Fractional-Order Fifth-Order Korteweg-de Vries Equations
In this paper, the ρ-homotopy perturbation transformation method was applied to analysis of fth-order nonlinear fractional Korteweg-de Vries (KdV) equations. is technique is the mixture form of the ρ-Laplace transformation with the homotopy perturbation method. e purpose of this study is to demonstrate the validity and e ciency of this method. Furthermore, it is demonstrated that the fractional and integer-order solutions close in on the exact result. e suggested technique was e ectively utilized and was accurate and simple to use for a number of related engineering and science models.
An explicit and numerical solutions of the fractional KdV equation
Mathematics and Computers in Simulation, 2005
In this paper, a fractional Korteweg-de Vries equation (KdV for short) with initial condition is introduced by replacing the first order time and space derivatives by fractional derivatives of order α and β with 0 < α, β ≤ 1, respectively. The fractional derivatives are described in the Caputo sense. The application of Adomian decomposition method, developed for differential equations of integer order, is extended to derive explicit and numerical solutions of the fractional KdV equation. The solutions of our model equation are calculated in the form of convergent series with easily computable components.
Engineering Computations, 2019
Purpose This study aims to find the solution of time-fractional Korteweg–de-Vries (tfKdV) equations which may be used for modeling various wave phenomena using homotopy perturbation transform method (HPTM). Design/methodology/approach HPTM, which consists of mainly two parts, the first part is the application of Laplace transform to the differential equation and the second part is finding the convergent series-type solution using homotopy perturbation method (HPM), based on He’s polynomials. Findings The study obtained the solution of tfKdV equations. An existing result “as the fractional order of KdV equation given in the first example decreases the wave bifurcates into two peaks” is confirmed with present results by HPTM. A worth mentioning point may be noted from the results is that the number of terms required for acquiring the convergent solution may not be the same for different time-fractional orders. Originality/value Although third-order tfKdV and mKdV equations have alread...
The Time-Fractional Coupled-Korteweg-de-Vries Equations
Abstract and Applied Analysis, 2013
We put into practice a relatively new analytical technique, the homotopy decomposition method, for solving the nonlinear fractional coupled-Korteweg-de-Vries equations. Numerical solutions are given, and some properties exhibit reasonable dependence on the fractional-order derivatives’ values. The fractional derivatives are described in the Caputo sense. The reliability of HDM and the reduction in computations give HDM a wider applicability. In addition, the calculations involved in HDM are very simple and straightforward. It is demonstrated that HDM is a powerful and efficient tool for FPDEs. It was also demonstrated that HDM is more efficient than the adomian decomposition method (ADM), variational iteration method (VIM), homotopy analysis method (HAM), and homotopy perturbation method (HPM).
The Efficient Techniques for Non-Linear Fractional View Analysis of the KdV Equation
Frontiers in Physics
The solutions to fractional differentials equations are very difficult to investigate. In particular, the solutions of fractional partial differential equations are challenging tasks for mathematicians. In the present article, an extension to this idea is presented to obtain the solutions of non-linear fractional Korteweg–de Vries equations. The solutions comparison of the proposed problems is done via two analytical procedures, which are known as the Residual power series method (RPSM) and q-HATM, respectively. The graphical and tabular analysis are presented to show the reliability and competency of the suggested techniques. The comparison has shown the greater contact between exact, RPSM, and q-HATM solutions. The fractional solutions are in good control and provide many important dynamics of the given problems.
A Novel Analytical View of Time-Fractional Korteweg-De Vries Equations via a New Integral Transform
Symmetry
We put into practice relatively new analytical techniques, the Shehu decomposition method and the Shehu iterative transform method, for solving the nonlinear fractional coupled Korteweg-de Vries (KdV) equation. The KdV equation has been developed to represent a broad spectrum of physics behaviors of the evolution and association of nonlinear waves. Approximate-analytical solutions are presented in the form of a series with simple and straightforward components, and some aspects show an appropriate dependence on the values of the fractional-order derivatives that are, in a certain sense, symmetric. The fractional derivative is proposed in the Caputo sense. The uniqueness and convergence analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the reduction in calculations provide broader applicability. It...
Approximate analytical solution for the fractional modified KdV by differential transform method
Communications in Nonlinear Science and Numerical Simulation, 2010
In this paper, the fractional modified Korteweg-de Vries equation (fmKdV) and fKdV are introduced by fractional derivatives. The approach rest mainly on two-dimensional differential transform method (DTM) which is one of the approximate methods. The method can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. Some illustrative examples are presented.
Symmetry
This article applies the homotopy perturbation transform technique to analyze fractional-order nonlinear fifth-order Korteweg–de-Vries-type (KdV-type)/Kawahara-type equations. This method combines the Zain Ul Abadin Zafar-transform (ZZ-T) and the homotopy perturbation technique (HPT) to show the validation and efficiency of this technique to investigate three examples. It is also shown that the fractional and integer-order solutions have closed contact with the exact result. The suggested technique is found to be reliable, efficient, and straightforward to use for many related models of engineering and several branches of science, such as modeling nonlinear waves in different plasma models.