The Universe of Utterances According to BERT (original) (raw)

What Does BERT Learn about the Structure of Language?

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

BERT is a recent language representation model that has surprisingly performed well in diverse language understanding benchmarks. This result indicates the possibility that BERT networks capture structural information about language. In this work, we provide novel support for this claim by performing a series of experiments to unpack the elements of English language structure learned by BERT. We first show that BERT's phrasal representation captures phrase-level information in the lower layers. We also show that BERT's intermediate layers encode a rich hierarchy of linguistic information, with surface features at the bottom, syntactic features in the middle and semantic features at the top. BERT turns out to require deeper layers when long-distance dependency information is required, e.g. to track subjectverb agreement. Finally, we show that BERT representations capture linguistic information in a compositional way that mimics classical, tree-like structures.

BERT's output layer recognizes all hidden layers? Some Intriguing Phenomena and a simple way to boost BERT

Cornell University - arXiv, 2020

Although Bidirectional Encoder Representations from Transformers (BERT) have achieved tremendous success in many natural language processing (NLP) tasks, it remains a black box. A variety of previous works have tried to lift the veil of BERT and understand each layer's functionality. In this paper, we found that surprisingly the output layer of BERT can reconstruct the input sentence by directly taking each layer of BERT as input, even though the output layer has never seen the input other than the final hidden layer. This fact remains true across a wide variety of BERT-based models, even when some layers are duplicated. Based on this observation, we propose a quite simple method to boost the performance of BERT. By duplicating some layers in the BERT-based models to make it deeper (no extra training required in this step), they obtain better performance in the downstream tasks after fine-tuning.

Augmenting BERT Carefully with Underrepresented Linguistic Features

arXiv (Cornell University), 2020

Fine-tuned Bidirectional Encoder Representations from Transformers (BERT)-based sequence classification models have proven to be effective for detecting Alzheimer's Disease (AD) from transcripts of human speech. However, previous research shows it is possible to improve BERT's performance on various tasks by augmenting the model with additional information. In this work, we use probing tasks as introspection techniques to identify linguistic information not wellrepresented in various layers of BERT, but important for the AD detection task. We supplement these linguistic features in which representations from BERT are found to be insufficient with hand-crafted features externally, and show that jointly fine-tuning BERT in combination with these features improves the performance of AD classification by upto 5% over fine-tuned BERT alone.

A Primer in BERTology: What We Know About How BERT Works

Transactions of the Association for Computational Linguistics, 2020

Transformer-based models have pushed state of the art in many areas of NLP, but our understanding of what is behind their success is still limited. This paper is the first survey of over 150 studies of the popular BERT model. We review the current state of knowledge about how BERT works, what kind of information it learns and how it is represented, common modifications to its training objectives and architecture, the overparameterization issue, and approaches to compression. We then outline directions for future research.

Distilling Task-Specific Knowledge from BERT into Simple Neural Networks

In the natural language processing literature, neural networks are becoming increasingly deeper and complex. The recent poster child of this trend is the deep language representation model, which includes BERT, ELMo, and GPT. These developments have led to the conviction that previous-generation, shallower neural networks for language understanding are obsolete. In this paper, however, we demonstrate that rudimentary, lightweight neural networks can still be made competitive without architecture changes, external training data, or additional input features. We propose to distill knowledge from BERT, a state-of-the-art language representation model, into a single-layer BiLSTM, as well as its siamese counterpart for sentence-pair tasks. Across multiple datasets in paraphrasing, natural language inference, and sentiment classification, we achieve comparable results with ELMo, while using roughly 100 times fewer parameters and 15 times less inference time.

Lessons Learned from Applying off-the-shelf BERT: There is no Silver Bullet

2020

One of the challenges in the NLP field is training large classification models, a task that is both difficult and tedious. It is even harder when GPU hardware is unavailable. The increased availability of pre-trained and off-the-shelf word embeddings, models, and modules aim at easing the process of training large models and achieving a competitive performance. We explore the use of off-the-shelf BERT models and share the results of our experiments and compare their results to those of LSTM networks and more simple baselines. We show that the complexity and computational cost of BERT is not a guarantee for enhanced predic-tive performance in the classification tasks at hand.

Does BERT really agree ? Fine-grained Analysis of Lexical Dependence on a Syntactic Task

Findings of the Association for Computational Linguistics: ACL 2022

Although transformer-based Neural Language Models demonstrate impressive performance on a variety of tasks, their generalization abilities are not well understood. They have been shown to perform strongly on subject-verb number agreement in a wide array of settings, suggesting that they learned to track syntactic dependencies during their training even without explicit supervision. In this paper, we examine the extent to which BERT is able to perform lexically-independent subject-verb number agreement (NA) on targeted syntactic templates. To do so, we disrupt the lexical patterns found in naturally occurring stimuli for each targeted structure in a novel fine-grained analysis of BERT's behavior. Our results on nonce sentences suggest that the model generalizes well for simple templates, but fails to perform lexically-independent syntactic generalization when as little as one attractor is present.

Representation biases in sentence transformers

Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, 2023

Variants of the BERT architecture specialised for producing full-sentence representations often achieve better performance on downstream tasks than sentence embeddings extracted from vanilla BERT. However, there is still little understanding of what properties of inputs determine the properties of such representations. In this study, we construct several sets of sentences with pre-defined lexical and syntactic structures and show that SOTA sentence transformers have a strong nominal-participant-set bias: cosine similarities between pairs of sentences are more strongly determined by the overlap in the set of their noun participants than by having the same predicates, lengthy nominal modifiers, or adjuncts. At the same time, the precise syntactic-thematic functions of the participants are largely irrelevant.

Rethinking of BERT Sentence Embedding for Text Classification

Research Square (Research Square), 2024

Text classification is a fundamental task in NLP that is used in several real-life tasks and applications. Large pre-trained language models such as BERT achieve state-of-the-art performance in several NLP tasks including text classification tasks. Although BERT boosts text classification performance, the common way of using it for classification lacks many aspects of its advantages. This work rethinks the way of using BERT final layer and hidden layers embeddings by proposing different aggregation architectures for text classification tasks such as sentiment analysis and sarcasm detection. This research also proposes different approaches for using BERT as a feature extractor without fine-tuning whose performance surpasses its fine-tuning counterpart. It also proposes promising multi-task learning aggregation architectures to improve the performance of the related classification problems. The experiments of the different architectures show that freezing BERT can outperform fine-tuning it for sentiment analysis. The experiments also show that multi-task learning while freezing BERT boosts the performance of yet hard tasks such as sarcasm detection. The best-performing models achieved new state-of-the-art performance on the ArSarcasm-v2 dataset for Arabic sarcasm detection and sentiment analysis. For multi-task learning and freezing BERT, a new SOTA F1-score of 64.41 was achieved for the sarcasm detection with a 3.47% improvement and near SOTA FPN of 75.78 for the sentiment classification. For single-task learning, a new SOTA FPN of 75.26 was achieved for the sentiment with a 1.81% improvement.

What BERT Based Language Models Learn in Spoken Transcripts: An Empirical Study

arXiv (Cornell University), 2021

Language Models (LMs) have been ubiquitously leveraged in various tasks including spoken language understanding (SLU). Spoken language requires careful understanding of speaker interactions, dialog states and speech induced multimodal behaviors to generate a meaningful representation of the conversation. In this work, we propose to dissect SLU into three representative properties: conversational (disfluency, pause, overtalk), channel (speakertype, turn-tasks) and ASR (insertion, deletion, substitution). We probe BERT based language models (BERT, RoBERTa) trained on spoken transcripts to investigate its ability to understand multifarious properties in absence of any speech cues. Empirical results indicate that LM is surprisingly good at capturing conversational properties such as pause prediction and overtalk detection from lexical tokens. On the downsides, the LM scores low on turntasks and ASR errors predictions. Additionally, pre-training the LM on spoken transcripts restrain its linguistic understanding. Finally, we establish the efficacy and transferability of the mentioned properties on two benchmark datasets: Switchboard Dialog Act and Disfluency datasets.