What Does BERT Learn about the Structure of Language? (original) (raw)

Distilling Task-Specific Knowledge from BERT into Simple Neural Networks

In the natural language processing literature, neural networks are becoming increasingly deeper and complex. The recent poster child of this trend is the deep language representation model, which includes BERT, ELMo, and GPT. These developments have led to the conviction that previous-generation, shallower neural networks for language understanding are obsolete. In this paper, however, we demonstrate that rudimentary, lightweight neural networks can still be made competitive without architecture changes, external training data, or additional input features. We propose to distill knowledge from BERT, a state-of-the-art language representation model, into a single-layer BiLSTM, as well as its siamese counterpart for sentence-pair tasks. Across multiple datasets in paraphrasing, natural language inference, and sentiment classification, we achieve comparable results with ELMo, while using roughly 100 times fewer parameters and 15 times less inference time.

The Universe of Utterances According to BERT

ICWS, 2023

It has been argued that BERT "rediscovers the traditional NLP pipeline", with lower layers extracting morphosyntactic features and higher layers creating holistic sentence-level representations. In this paper, we critically examine this assumption through a principle-componentguided analysis, extracing sets of inputs that correspond to specific activation patterns in BERT sentence representations. We find that even in higher layers, the model mostly picks up on a variegated bunch of low-level features, many related to sentence complexity, that presumably arise from its specific pre-training objectives.

BERT's output layer recognizes all hidden layers? Some Intriguing Phenomena and a simple way to boost BERT

Cornell University - arXiv, 2020

Although Bidirectional Encoder Representations from Transformers (BERT) have achieved tremendous success in many natural language processing (NLP) tasks, it remains a black box. A variety of previous works have tried to lift the veil of BERT and understand each layer's functionality. In this paper, we found that surprisingly the output layer of BERT can reconstruct the input sentence by directly taking each layer of BERT as input, even though the output layer has never seen the input other than the final hidden layer. This fact remains true across a wide variety of BERT-based models, even when some layers are duplicated. Based on this observation, we propose a quite simple method to boost the performance of BERT. By duplicating some layers in the BERT-based models to make it deeper (no extra training required in this step), they obtain better performance in the downstream tasks after fine-tuning.

Does BERT really agree ? Fine-grained Analysis of Lexical Dependence on a Syntactic Task

Findings of the Association for Computational Linguistics: ACL 2022

Although transformer-based Neural Language Models demonstrate impressive performance on a variety of tasks, their generalization abilities are not well understood. They have been shown to perform strongly on subject-verb number agreement in a wide array of settings, suggesting that they learned to track syntactic dependencies during their training even without explicit supervision. In this paper, we examine the extent to which BERT is able to perform lexically-independent subject-verb number agreement (NA) on targeted syntactic templates. To do so, we disrupt the lexical patterns found in naturally occurring stimuli for each targeted structure in a novel fine-grained analysis of BERT's behavior. Our results on nonce sentences suggest that the model generalizes well for simple templates, but fails to perform lexically-independent syntactic generalization when as little as one attractor is present.

Does Chinese BERT Encode Word Structure?

Proceedings of the 28th International Conference on Computational Linguistics

Contextualized representations give significantly improved results for a wide range of NLP tasks. Much work has been dedicated to analyzing the features captured by representative models such as BERT. Existing work finds that syntactic, semantic and word sense knowledge are encoded in BERT. However, little work has investigated word features for character-based languages such as Chinese. We investigate Chinese BERT using both attention weight distribution statistics and probing tasks, finding that (1) word information is captured by BERT; (2) word-level features are mostly in the middle representation layers; (3) downstream tasks make different use of word features in BERT, with POS tagging and chunking relying the most on word features, and natural language inference relying the least on such features.

On the evolution of syntactic information encoded by BERT’s contextualized representations

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 2021

The adaptation of pretrained language models to solve supervised tasks has become a baseline in NLP, and many recent works have focused on studying how linguistic information is encoded in the pretrained sentence representations. Among other information, it has been shown that entire syntax trees are implicitly embedded in the geometry of such models. As these models are often fine-tuned, it becomes increasingly important to understand how the encoded knowledge evolves along the fine-tuning. In this paper, we analyze the evolution of the embedded syntax trees along the fine-tuning process of BERT for six different tasks, covering all levels of the linguistic structure. Experimental results show that the encoded syntactic information is forgotten (PoS tagging), reinforced (dependency and constituency parsing) or preserved (semanticsrelated tasks) in different ways along the finetuning process depending on the task.

A Primer in BERTology: What We Know About How BERT Works

Transactions of the Association for Computational Linguistics, 2020

Transformer-based models have pushed state of the art in many areas of NLP, but our understanding of what is behind their success is still limited. This paper is the first survey of over 150 studies of the popular BERT model. We review the current state of knowledge about how BERT works, what kind of information it learns and how it is represented, common modifications to its training objectives and architecture, the overparameterization issue, and approaches to compression. We then outline directions for future research.

CxGBERT: BERT meets Construction Grammar

Proceedings of the 28th International Conference on Computational Linguistics, 2020

While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been argued that they do not capture all information contained in text. This assumption is central to constructionist approaches to language which argue that language consists of constructions, learned pairings of a form and a function or meaning that are either frequent or have a meaning that cannot be predicted from its component parts. BERT's training objectives give it access to a tremendous amount of lexico-semantic information, and while BERTology has shown that BERT captures certain important linguistic dimensions, there have been no studies exploring the extent to which BERT might have access to constructional information. In this work we design several probes and conduct extensive experiments to answer this question. Our results allow us to conclude that BERT does indeed have access to a significant amount of information, much of which linguists typically call constructional information. The impact of this observation is potentially far-reaching as it provides insights into what deep learning methods learn from text, while also showing that information contained in constructions is redundantly encoded in lexicosemantics.

Do Attention Heads in BERT Track Syntactic Dependencies?

ArXiv, 2019

We investigate the extent to which individual attention heads in pretrained transformer language models, such as BERT and RoBERTa, implicitly capture syntactic dependency relations. We employ two methods---taking the maximum attention weight and computing the maximum spanning tree---to extract implicit dependency relations from the attention weights of each layer/head, and compare them to the ground-truth Universal Dependency (UD) trees. We show that, for some UD relation types, there exist heads that can recover the dependency type significantly better than baselines on parsed English text, suggesting that some self-attention heads act as a proxy for syntactic structure. We also analyze BERT fine-tuned on two datasets---the syntax-oriented CoLA and the semantics-oriented MNLI---to investigate whether fine-tuning affects the patterns of their self-attention, but we do not observe substantial differences in the overall dependency relations extracted using our methods. Our results sug...

How Can BERT Help Lexical Semantics Tasks?

arXiv (Cornell University), 2019

Contextualized embeddings such as BERT can serve as strong input representations to NLP tasks, outperforming their static embeddings counterparts such as skip-gram, CBOW and GloVe. However, such embeddings are dynamic, calculated according to a sentencelevel context, which limits their use in lexical semantics tasks. We address this issue by making use of dynamic embeddings as word representations in training static embeddings, thereby leveraging their strong representation power for disambiguating context information. Results show that this method leads to improvements over traditional static embeddings on a range of lexical semantics tasks, obtaining the best reported results on seven datasets.