Robust supervised learning with coordinate gradient descent (original) (raw)

Robust Risk Minimization for Statistical Learning From Corrupted Data

Muhammad Osama

IEEE Open Journal of Signal Processing

View PDFchevron_right

Robust methods for high-dimensional linear learning

Ibrahim Merad

arXiv (Cornell University), 2022

View PDFchevron_right

Robust Empirical Risk Minimization with Tolerance

Hantao Yu

arXiv (Cornell University), 2022

View PDFchevron_right

Robust Regression

Ricardo Cabral

Lecture Notes in Computer Science, 2012

View PDFchevron_right

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent

abolfazl hashemi

2021

View PDFchevron_right

Robust Regression via Hard Thresholding

Prateek Jain

View PDFchevron_right

Making Risk Minimization Tolerant to Label Noise

Naresh Manwani

Neurocomputing, 2015

View PDFchevron_right

A new loss function for robust classification

John Yearwood

Intelligent Data Analysis, 2014

View PDFchevron_right

Distributionally Robust Learning with Weakly Convex Losses: Convergence Rates and Finite-Sample Guarantees

Andrzej Ruszczynski

arXiv (Cornell University), 2023

View PDFchevron_right

Stochastic coordinate transformations with applications to robust machine learning

Mark Kon

Cornell University - arXiv, 2021

View PDFchevron_right

New Risk Modeling Method for Robust Learning on Smaller Samples

Marina Sapir

2011

View PDFchevron_right

Fast approximate L∞ minimization: Speeding up robust regression

Rhys Hill

Computational Statistics & Data Analysis, 2014

View PDFchevron_right

Robust Optimization for Deep Regression

Christian Rupprecht

2015

View PDFchevron_right

Risk Variance Penalization: From Distributional Robustness to Causality

Haotian Ye

2020

View PDFchevron_right

Oracle-Based Robust Optimization via Online Learning

Aharon Ben-tal

Operations Research, 2015

View PDFchevron_right

Fast approximate minimization: Speeding up robust regression

Fumin Shen, Rhys Hill

Computational Statistics & Data Analysis, 2014

View PDFchevron_right

On robustness properties of convex risk minimization methods for pattern recognition

Andreas Christmann

2004

View PDFchevron_right

Robust logistic regression with bounded data uncertainties

Alfred O. Hero

View PDFchevron_right

Robust support vector machines for classification and computational issues

Theodore Trafalis

Optimization Methods and Software, 2007

View PDFchevron_right

Robust ridge regression for high-dimensional data

bad ri

View PDFchevron_right

Robustness properties of a robust partial least squares regression method

Mia Hubert

Analytica Chimica Acta, 2004

View PDFchevron_right

Robust convex optimization: A new perspective that unifies and extends

Dimitris Bertsimas

Mathematical Programming

View PDFchevron_right

Lectures on robust convex optimization

Arkadi Nemirovski

2009

View PDFchevron_right

Robust Convex Optimization

Arkadi Nemirovski, Aharon Ben-tal

Mathematics of Operations Research, 1998

View PDFchevron_right

Robust and Distributionally Robust Optimization Models for Linear Support Vector Machine

Florian Potra

2021

View PDFchevron_right

Robust Approaches for Matrix-Valued Parameters

Naimin Jing

2021

View PDFchevron_right

A class of optimization problems motivated by rank estimators in robust regression

Milan Hladík

Optimization, 2020

View PDFchevron_right

Cost function for robust estimation of PCA

Jose Principe

SPIE Proceedings, 1996

View PDFchevron_right

Low-Rank-Sparse Subspace Representation for Robust Regression

Junbin Gao

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

View PDFchevron_right

Robust Linear Regression Using L1-Penalized MM-Estimation for High Dimensional Data

ali hakan buyuklu

American Journal of Theoretical and Applied Statistics, 2015

View PDFchevron_right

Learning with noisy labels

Ambuj Tewari

View PDFchevron_right

Descending, lifting or smoothing: Secrets of robust cost optimization

Guillaume Bourmaud

View PDFchevron_right

Derivative-free optimization and neural networks for robust regression

John Yearwood

Optimization, 2012

View PDFchevron_right

Training Provably Robust Models by Polyhedral Envelope Regularization

Mathieu Salzmann

IEEE Transactions on Neural Networks and Learning Systems

View PDFchevron_right

Robust regression framework with asymmetrically analogous to correntropy-induced loss

Guangsheng Ding

Knowledge-Based Systems, 2019

View PDFchevron_right