Inflammation- and Tissue Remodeling-Related Gene Responses in Skeletal Muscle of Heart Failure Patients Following High-Intensity Interval Training (original) (raw)
Related papers
Journal of the American College of Cardiology, 2003
The aim of this investigation was to determine the effect of exercise training on the levels of plasma cytokines and acute phase reactants in the early post acute myocardial infarction (AMI) period. Sixty patients were enrolled into this three-week cardiac rehabilitation study. The mean time from AMI was 7.08±1.60 days, and the patient mean age was 60±10 years. Subjects were randomly assigned to one of the two groups: the control group treated with standard measures, and the group with additional regular moderate-intensity exercise training. Physical activity was based on the ergospirometry test results. Apart from clinical follow-up and routine laboratory analysis we determined the levels of plasma cytokines: tumor necrosis factor (TNF-a), soluble TNF-a receptor 1(TNF-aSR1), interleukin (IL)-8, IL-10, and acute phase reactants: high sensitivity C-reactive protein (hsCRP) and fibrinogen. The obtained results confirmed the hypothesis that the early post AMI period is an inflammatory state the intensity of which gradually decreases with standard treatment during the first month after AMI, while including patients into early exercise training improves their inflammatory profile by decreasing the level of acute phase reactant and TNF-aSR1.
Cells, 2021
Peripheral myopathy consists of a hallmark of heart failure (HF). Exercise enhanced skeletal muscle angiogenesis, and thus, it can be further beneficial towards the HF-induced myopathy. However, there is limited evidence regarding the exercise type that elicits optimum angiogenic responses of skeletal muscle in HF patients. This study aimed to (a) compare the effects of a high-intensity-interval-training (HIIT) or combined HIIT with strength training (COM) exercise protocol on the expression of angiogenesis-related factors in skeletal muscle of HF patients, and (b) examine the potential associations between the expression of those genes and capillarization in the trained muscles. Thirteen male patients with chronic HF (age: 51 ± 13 y; BMI: 27 ± 4 kg/m2) were randomly assigned to a 3-month exercise program that consisted of either HIIT (N = 6) or COM training (N = 7). Vastus lateralis muscle biopsies were performed pre- and post-training. RT-PCR was used to quantify the fold changes ...
Molecular Biology Reports
Eccentric exercise has been extensively used as a model to study the contraction-induced muscle damage and its consequent processes. This study aimed at examining molecular responses associated with tissue remodelling, inflammation and angiogenesis in skeletal muscle during the recovery period after eccentric exercise in humans. Ten healthy men performed 50 maximal eccentric muscle actions with the knee extensors and muscle biopsies were collected from the vastus lateralis before and 6 h, 48 h and 120 h post eccentric exercise. Real Time-PCR was utilized to investigate alterations in gene expression of various tissue remodelling-, inflammation-and angiogenesis-related factors: uPA, uPA-R, TGF-β1, MMP-9, TNF-α, IL-6, IL-8, VEGF, VEGFR-2, HIF-1a, Ang-1, Ang-2 and Tie-2. The uPA/uPA-R system exhibited a similar time-expression pattern increasing 6 h post exercise (p < 0.05), while the other tissue remodelling factors TGF-β1 and MMP-9 did not change significantly over time. Transcriptional responses of inflammatory factors TNF-α and IL-8 increased significantly and peaked 6 h post eccentric exercise (p < 0.05), while IL-6 exhibited a similar, though not statistically significant, expression profile (p > 0.05). Similarly, the expression of angiopoietin receptor Tie-2 showed an early increase only at 6 h after the completion of exercise (p < 0.05), while the other angiogenic factors failed to reach statistical significance due a high interindividual variability in the gene expression responses. The early transcriptional upregulation of tissue remodelling, inflammationand angiogenesis-related factors post eccentric exercise may indicate the acute intramuscular activation of these processes functionally related to muscle damage-induced adaptation.
Renewed avenues through exercise muscle contractility and inflammatory status
TheScientificWorldJournal, 2012
Physical inactivity leads to the accumulation of visceral fat and, consequently, to the activation of a network of inflammatory pathways which may promote development of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. These conditions belong to the "diseasome of physical inactivity". In contrast, the protective effect of regular exercise against diseases associated with chronic inflammation may to some extent be ascribed to an anti-inflammatory effect. The so called "acute exercise threshold", the complex mixture of several variables involved in exercise, such as type, volume, frequency, and intensity range is capable of inducing positive physiological adaptations and has been specifically addressed in the recent literature. The major concern is related to the level of the threshold: "exercise training shifts from a therapeutic adaptive intervention to one with potential pathological consequences". Nonetheless, if the mechanic...
Journal of Inflammation Research, 2016
The study of exercise-induced muscle damage (EIMD) is of paramount importance not only because it affects athletic performance but also because it is an excellent model to study the mechanisms governing muscle cachexia under various clinical conditions. Although, a large number of studies have investigated EIMD and its associated inflammatory response, several aspects of skeletal muscles responses remain unclear. In the first section of this article, the mechanisms of EIMD are reviewed in an attempt to follow the events that result in functional and structural alterations of skeletal muscle. In the second section, the inflammatory response associated with EIMD is presented with emphasis in leukocyte accumulation through mechanisms that are largely coordinated by pro-and anti-inflammatory cytokines released either by injured muscle itself or other cells. The practical applications of EIMD and the subsequent inflammatory response are discussed with respect to athletic performance. Specifically, the mechanisms leading to performance deterioration and development of muscle soreness are discussed. Emphasis is given to the factors affecting individual responses to EIMD and the resulting interindividual variability to this phenomenon.
Effect of exercise training on skeletal muscle cytokine expression in the elderly
Brain, Behavior, and Immunity, 2014
Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12 weeks of resistance exercise training in young (n = 8, 20.3 ± 0.8 yr) and elderly men (n = 8, 66.9 ± 1.6 yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as 'pro-inflammatory') increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12 weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2 h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.
Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats
Cytokine, 2010
Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro-(TNF-a) and anti-(IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-a and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/week, for 8-10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-a protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-a ratio was increased. This ''anti-inflammatory effect" was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response.
Mediators of Inflammation, 2010
Aging is associated with low-grade inflammation. The benefits of regular exercise for the elderly are well established, whereas less is known about the impact of low-intensity resistance exercise on low-grade inflammation in the elderly. Twenty-one elderly women (mean age ± SD, 85.0 ± 4.5 years) participated in 12 weeks of resistance exercise training. Muscle thickness and circulating levels of C-reactive protein (CRP), serum amyloid A (SAA), heat shock protein (HSP)70, tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, monocyte chemotactic protein (MCP-1), insulin, insulin-like growth factor (IGF)-I, and vascular endothelial growth factor (VEGF) were measured before and after the exercise training. Training reduced the circulating levels of CRP, SAA (P<.05), HSP70, IGF-I, and insulin (P<.01). The training-induced reductions in CRP and TNF-α were significantly (P<.01,P<.05) associated with increased muscle thickness (r=−0.61,r=−0.54), respectively. None of the resu...
Resistance exercise training influences skeletal muscle immune activation: a microarray analysis
Journal of Applied Physiology, 2012
EP. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. The primary aim of this investigation was to evaluate the effect of training on the immune activation in skeletal muscle in response to an acute bout of resistance exercise (RE). Seven young healthy men and women underwent a 12-wk supervised progressive unilateral arm RE training program. One week after the last training session, subjects performed an acute bout of bilateral RE in which the trained and the untrained arm exercised at the same relative intensity. Muscle biopsies were obtained 4 h postexercise from the biceps brachii of both arms and assessed for global transcriptom using Affymetrix U133 plus 2.0 microarrays. Significantly regulated biological processes and gene groups were analyzed using a logistic regression-based method following differential (trained vs. untrained) gene expression testing via an intensity-based Bayesian moderated t-test. The results from the present study suggest that training blunts the transcriptional upregulation of immune activation by minimizing expression of genes involved in monocyte recruitment and enhancing gene expression involved in macrophage anti-inflammatory polarization. Additionally, our data suggest that training blunts the transcriptional upregulation of the stress response and the downregulation of glucose metabolism, mitochondrial structure, and oxidative phosphorylation, and it enhances the transcriptional upregulation of the extracellular matrix and cytoskeleton development and organization and the downregulation of gene transcription and muscle contraction. This study provides novel insight into the molecular processes involved in the adaptive response of skeletal muscle following RE training and the cellular and molecular events implicating the protective role of training on muscle stress and damage inflicted by acute mechanical loading. transcription profile; repeated bout effect; inflammation; macrophage RESISTANCE EXERCISE (RE) CAN impart multiple health benefits to individuals, especially those experiencing diminished muscle mass and function. Declines in muscle mass and strength are associated with the aging process and accompany the progression of various chronic diseases such as type II diabetes mellitus, kidney disease, cancer, osteoarthritis, neuromuscular disorders, HIV, and chronic obstructive pulmonary disease (12). RE among these populations has been recommended as a superior modality for increasing muscle volume and strength.