Insect pollination is the weakest link in the production of a hybrid seed crop (original) (raw)

Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop

Ecology Letters

The sustainability of agriculture can be improved by integrating management of ecosystem services, such as insect pollination, into farming practices. However, large-scale adoption of ecosystem services-based practices in agriculture is lacking, possibly because growers undervalue the benefits of ecosystem services compared to those of conventional management practices. Here we show that, under representative real-world conditions, pollination and plant quality made similar contributions to marketable seed yield of hybrid leek (Allium porrum). Relative to the median, a 25% improvement of plant quality and pollination increased crop value by an estimated 18007and18 007 and 18007and17 174 ha À1 respectively. Across five crop lines, bumblebees delivered most pollination services, while other wild pollinator groups made less frequent but nevertheless substantial contributions. Honeybees actively managed for pollination services did not make significant contributions. Our results show that wild pollinators are an undervalued agricultural input and managing for enhancing pollinators makes sense economically in high-revenue insect-pollinated cropping systems.

Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

PeerJ, 2014

Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect po...

Insect pollination enhances yield stability in two pollinator-dependent crops

Agriculture, Ecosystems & Environment, 2021

One of the most important challenges facing global agriculture is to ensure an adequate, stable food supply while conserving soil, water and biodiversity. The yield stability of pollinator-dependent crops, such as pear and apple, can be negatively affected by variability of the pollination service, which in turn can reduce mean yield. We explored how mean crop yield and yield variability were affected by pollinators and variability in their provision of the pollination service. Over four seasons we conducted a manipulative experiment in six pear and eight apple farms; fruit set (i.e., no. fruits/ no. flowers) was compared between flowers exposed to pollinators and those excluded from pollinators. We also recorded pollinator visitation rate to exposed flowers. We estimated the mean levels and spatial and temporal variability of both pollinator visitation and yield response by calculating the mean values per farm and the spatial (i.e., across trees within farm) and temporal (i.e., across seasons within farm) coefficients of variation (CV) for visitation rate and fruit set. Despite homogeneous irrigation and fertilization, we found strong variability in fruit set in both crops (pear spatial and temporal CV: 0.57 and 0.4, respectively; apple: 0.62 and 0.52). Pollinator exclusion reduced mean fruit set considerably in both crops (pears: a reduction of 50%, apples: 71-92%), and increased spatial and temporal variability (pears: 296% and 197% for spatial and temporal variability, respectively; apples: 385% and 329%). Visitation rates in pears were positively associated with mean fruit set and negatively related to its spatial CV. Also, in this crop we found a positive relation between the spatial CV of visitation rate and fruit set. However, there was no evidence that visitation rate in open-pollinated apple flowers affected either mean fruit set or its spatial or temporal variability. Apple trees received one order of magnitude more visits per flower than pear trees, suggesting that in this system the pollination service meets the pollination demand of the apple crop. Overall, our results highlight the importance of management practices that prioritize pollination service, thus ensuring a high, stable yield.

Opportunities to reduce pollination deficits and address production shortfalls in an important insect-pollinated crop

Ecological Applications, 2021

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of “pollination deficits,” where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared “pollinator dependence” across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.

Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture

Ecosystem services (ES) such as pollination are vital for the continuous supply of food to a growing human population, but the decline in populations of insect pollinators worldwide poses a threat to food and nutritional security. Using a pollinator (honeybee) exclusion approach, we evaluated the impact of pollinator scarcity on production in four brassica fields, two producing hybrid seeds and two producing open-pollinated ones. There was a clear reduction in seed yield as pollination rates declined. Open-pollinated crops produced significantly higher yields than did the hybrid ones at all pollination rates. The hybrid crops required at least 0.50 of background pollination rates to achieve maximum yield, whereas in open-pollinated crops, 0.25 pollination rates were necessary for maximum yield. The total estimated economic value of pollination services provided by honeybees to the agricultural industry in New Zealand is NZD 1.96billionannually.ThisstudyindicatesthatlossofpollinationservicescanresultinsignificantdeclinesinproductionandhaveseriousimplicationsforthemarketeconomyinNewZealand.Dependingontheextentofhoneybeepopulationdecline,andassumingthatresultsindecliningpollinationservices,theestimatedeconomiclosstoNewZealandagriculturecouldbeintherangeofNZD1.96 billion annually. This study indicates that loss of pollination services can result in significant declines in production and have serious implications for the market economy in New Zealand. Depending on the extent of honeybee population decline, and assuming that results in declining pollination services, the estimated economic loss to New Zealand agriculture could be in the range of NZD 1.96billionannually.ThisstudyindicatesthatlossofpollinationservicescanresultinsignificantdeclinesinproductionandhaveseriousimplicationsforthemarketeconomyinNewZealand.Dependingontheextentofhoneybeepopulationdecline,andassumingthatresultsindecliningpollinationservices,theestimatedeconomiclosstoNewZealandagriculturecouldbeintherangeofNZD295-728 million annually.

Dependency of Crops on Pollinators and Pollination Deficits: An Approach to Measurement Considering the Influence of Various Reproductive Traits

Agriculture, 2023

Pollinators provide crucial ecosystem services, i.e., pollination, which determines crops’ reproductive fitness and yield. As pollinators decline, flowering crops might face pollination-deficit stress depending on their dependence on pollinators and pollinator availability. Here, we assessed the dependency of some crops (belonging to diverse plant families) on biotic pollinators based on their maximum reproductive potential in a supplementary pollination treatment and minimum reproductive success in a pollinator exclusion treatment. Additionally, we determined the pollen transfer limitation of the crops in open field conditions. We also determined the influence of the different reproductive traits with the index of dependency of crops on pollinators (IDP) and the coefficient of pollination deficit (D). Based on the values of IDP, members of Cucurbitaceae are obligatorily dependent on pollinators for their fruit set. Members of Brassicaceae and Rutaceae are highly reliant on pollinators. A few crops, like Lablab purpureus and Nigella sativa, are less dependent on pollinators. In open field conditions, most crops have a low pollination deficit, some without pollen transfer limitations, and only a few crops (Citrus × limon and Citrus maxima) show a higher pollination deficit. The IDP is negatively influenced by the pollen–ovule ratio, which also negatively affects the pollination deficit of the crops. This study will be useful in understanding and mitigating the effects of pollinator losses, as well as in choosing crops (those under pollination deficit stress and largely dependent on pollinators for fruit set) for supplemental pollination services to increase agricultural production.

Pollinator Limitation and Crop Production: Experimental Observations on Few Economically Important Vegetable Crops in West Bengal, India

Proceedings of the Zoological Society, 2016

Pollination limitation and its impact on agricultural production is a serious concern of recent time. Assessment of the extent of dependency of various pollinator dependent crops on insect pollination assumes importance in this context. On the other hand, measures for restoring the pollination service needs to be explored for sustainable production of economically important crops particularly for the benefit of the small and marginal farmers. The present study aimed to assess the extent of insect pollinator dependency of brinjal (eggplant) fruit production and impact of honey bee (Apis cerana F) box introduction on the production in vegetable farms of North 24 Parganas, West Bengal, India. Through a pollinator exclusion experiment using enclosures it was found that brinjal fruit production reduces by 54.5 % when they are pollinator limited. This finding is in contrast with earlier report of 25 % dependency. The flower density in a pollinator limited environment was observed to increase by 31 %. This might be plant's response to pollinator limitation where the plant invests more on reproductive structure than vegetative structures. However, this requires further exploration. Introduction of bee boxes in brinjal, pumpkin and pointed gourd farms showed significant increase in fruit production. This indicates both pollination limitation as well as the need for increasing the pollinators in the crop field for sustainable crop production.

Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification

Global Change Biology, 2019

The global increase in the proportion of land cultivated with pollinator-dependent crops implies increased reliance on pollination services. Yet agricultural practices themselves can profoundly affect pollinator supply and pollination. Extensive mon-ocultures are associated with a limited pollinator supply and reduced pollination, whereas agricultural diversification can enhance both. Therefore, areas where agricultural diversity has increased, or at least been maintained, may better sustain high and more stable productivity of pollinator-dependent crops. Given that >80% of all crops depend, to varying extents, on insect pollination, a global increase in agricultural pollinator dependence over recent decades might have led to a concomitant increase in agricultural diversification. We evaluated whether an increase in the area

Crop management modifies the benefits of insect pollination in oilseed rape

Agriculture, Ecosystems & Environment, 2015

In a factorial field plot experiment, high and low levels of inorganic nitrogen and of insect pollinators visiting the crop were manipulated and their combined effects on oilseed rape yield were quantified. A third factor was also included, testing whether different cultivars responded differently to the tested factors. Insect pollination was required to reach high yield and seed quality (oil content). Final benefits of pollination service were, however, greatly modified by cultivar, where the seed yield of the openpollinated cultivar largely depended on insect pollination whereas the two hybrid cultivars did not. A near significant interaction between nitrogen input and insect pollination was also found, i.e. benefits to crop yield from insect pollination seemed to increase with decreased nitrogen levels. The differential response of the three cultivars suggested opportunities to use cultivars that are less dependent on insect pollination in landscapes where this service has been deteriorated. Increased access of nitrogen seems to partly compensate yield losses from poor insect pollination. Integrating conservation, environmental and agronomic sciences is therefore crucial to sustain agriculture productions through optimized management of agronomic inputs and biodiversity-based ecosystem services.

How much does agriculture depend on pollinators? Lessons from long-term trends in crop production

Annals of botany, 2009

Productivity of many crops benefits from the presence of pollinating insects, so a decline in pollinator abundance should compromise global agricultural production. Motivated by the lack of accurate estimates of the size of this threat, we quantified the effect of total loss of pollinators on global agricultural production and crop production diversity. The change in pollinator dependency over 46 years was also evaluated, considering the developed and developing world separately. Using the extensive FAO dataset, yearly data were compiled for 1961-2006 on production and cultivated area of 87 important crops, which we classified into five categories of pollinator dependency. Based on measures of the aggregate effect of differential pollinator dependence, the consequences of a complete loss of pollinators in terms of reductions in total agricultural production and diversity were calculated. An estimate was also made of the increase in total cultivated area that would be required to com...