Scanning electron microscopy and microbiological approaches for the evaluation of salivary microorganisms behaviour on anatase titanium surfaces: In vitro study (original) (raw)
Related papers
Journal of Periodontology, 2010
Background: Little is known about the mechanisms of bacterial interaction with implant materials in the oral cavity. A correlation between plaque accumulation and progressive bone loss around implants has been reported. Bacterial adhesion shows a direct positive correlation with surface roughness. Other surface characteristics also seem to be extremely important with regard to plaque formation. Different adhesion affinities of bacteria have been reported for different materials. The aim of this study was to characterize the percentage of surface covered by bacteria on commercially pure titanium and zirconium oxide disks. Methods: Ten patients participated in this study. A removable acrylic device was adapted to the molar-premolar region, and commercially pure titanium (control) and zirconium oxide (test) disks were glued to the buccal aspect of each device. The surface roughness of titanium and test specimens was similar. After 24 hours, all disks were removed and processed for scanning electron microscopy, for the evaluation of the portion of surface covered by bacteria. Results: In control specimens, the area covered by bacteria was 19.3% ± 2.9; in test specimens, the area was 12.1% ± 1.96. The disk surface covered by bacteria on test specimens was significantly lower than that of control specimens (P = 0.0001). Conclusion: Our results demonstrate that zirconium oxide may be a suitable material for manufacturing implant abutments with a low colonization potential.
Bacterial Adhesion on Commercially Pure Titanium and Zirconium Oxide Disks: An In Vivo Human Study
Journal of Periodontology, 2004
Background: Little is known about the mechanisms of bacterial interaction with implant materials in the oral cavity. Other surface characteristics, in addition to surface roughness, seem to be extremely important in relation to plaque formation. Different adhesion affinities of bacteria were reported for different materials. Anatase is a nanoparticle that can be applied to titanium surfaces as a coating. The anatase coating gives special characteristics to the implant surface, including some genetic effects on osteoblasts. In this study, the antibacterial effect of anatase is investigated. The aim of this study is to characterize the percentages of surfaces covered by bacteria on commercially pure (cp) titanium and anatase-coated healing screws. Methods: Ten patients participated in this study. The protocol of the study was approved by the ethics committee of the University of Chieti-Pescara. A total of 20 healing screws (10 test and 10 control screws) were used in the study. The control screws were made of cp titanium, whereas the test screws were coated with anatase. Cleaning procedures and agents for chemical plaque control were not applied to the healing screws for the complete duration of the test period. After 7 days, all healing screws were removed, substituted, and processed under scanning electron microscopy for evaluation of the portions of the surfaces covered by bacteria. Results: The supracrestal screw surfaces covered by bacteria on test specimens were not significantly lower than those of control screws (P = 0.174). The subcrestal screw surfaces and threads covered by bacteria on test specimens were significantly lower than those of control screws, and P values were 0.001 and 0.000, respectively. Conclusion: Results show that anatase could be a suitable material for coating implant abutments, with a low colonization potential.
Decreased bacterial adhesion to surface-treated titanium
The International journal of artificial organs
Osteointegrative dental implants are widely used in implantology for their well-known excellent performance once implanted in the host. Remarkable bacterial colonization along the transgingival region may result in a progressive loss of adhesion at gum-implant interface and an increase of the bone area exposed to pathogens. This phenomenon may negatively effect the osteointegration process and cause, in the most severe cases, implant failure. The presence of bacteria at implant site affect the growth of new bone tissue and consequently, the achievement of a mechanically stable bone-implant interface, key parameters for a suitable implant osteointegration. In the present work, a novel surface treatment has been developed and optimized in order to convert the amorphous titanium oxide in a crystalline layer enriched in anatase capable of providing not only antibacterial properties but also of stimulating the precipitation of apatite when placed in simulated body fluid. The collected data have shown that the tested treatment results in a crystalline anatasetype titanium oxide layer able to provide a remarkable decrease in bacterial attachment without negatively effecting cell metabolic activity. In conclusion, the surface modification treatment analyzed in the present study might be an elegant way to reduce the risk of bacterial adhesion and increase the lifetime of the transgingival component in the osteointegrated dental implant. (Int J Artif Organs 2005; 28: 718-30)
Dental Materials, 2020
Objective.-Very few studies have investigated dental implant components involved in the early stage of healing, especially the implant healing abutment (IHA), despite its vital role in soft tissue contouring and shaping after implant placement. Although these components are labelled by the manufacturer for "single-use only," it is a common clinical practice to clean, sterilize, and reuse them. Methods.-In the present study, IHAs after single and multiple implantations were retrieved as per standard procedures, and biological material isolated from the surface was subjected to 16S rRNA sequence analysis. The microbiome analysis was followed by cleaning and sterilization in order to replicate clinical sterilization techniques. Following sterilization, retrievals were subjected to surface characterization with optical and scanning electron microscopy to investigate surface features, and electrochemical testing was performed to evaluate corrosion behavior. Results.-The microbiota was comprised of early colonizers including Streptococcus species and secondary anaerobic colonizers such as Fusobacterium, Capnocytophaga, and Prevotella species. The surface analysis revealed that irrespective of the cleaning and sterilization techniques, the pristine, homogeneous surface of the new, unused IHAs could not be restored. Both single and multiple-use IHAs had severe surface changes including discoloration, major abrasions, biological contamination, and the IHA retrievals exhibited higher corrosion rate as compared to control specimens.
Clinical Oral Implants Research, 1998
A lack of information exists about the influence of different implant abutment materials on bacterial colonization and its role in the development of perimplantar infections. In order to study these aspects, removable acrylic devices, harboring samples of titanium and novel ceramic abutments (Nobel Biocare) were adapted to the molar-premolar region in 2 mandibular quadrants of 4 volunteers. Samples of each material were collected at 6 and 24 h, 7 and 14 days. Samples were observed by scanning electron microscopy and bacterial counts were made by means of ATP detection and direct plate count. The electron micrographs demonstrated that the bacteria colonization was already present after 6 h of presence in the oral cavity. After 24 h, both the materials were covered by several layers of bacterial cells. No differences in microbial colonization were observed between titanium and ceramic samples. The microbiological analysis confirmed the presence of relevant amounts of microbial cells on the tested samples. The maximum of colonization was achieved after 24 h in the oral cavity and the bacterial counts remained constant over the 14 day period. No significant differences were observed between the two materials analyzed in this study. In addition, ATP-bioluminescence technology was demonstrated to be a suitable system to evaluate bacterial colonization in the oral cavity.
Materials
The influence of the surface topography of dental implants has been studied to optimize titanium surfaces in order to improve osseointegration. Different techniques can be used to obtain rough titanium, however, their effect on wettability, surface energy, as well as bacterial and cell adhesion and differentiation has not been studied deeply. Two-hundred disks made of grade 4 titanium were subjected to different treatments: machined titanium (MACH), acid-attacked titanium (AE), titanium sprayed with abrasive alumina particles under pressure (GBLAST), and titanium that has been treated with GBLAST and then subjected to AE (GBLAST + AE). The roughness of the different treatments was determined by confocal microscopy, and the wettability was determined by the sessile drop technique; then, the surface energy of each treatment was calculated. Osteoblast-like cells (SaOs-2) were cultured, and alkaline phosphatase was determined using a colorimetric test. Likewise, bacterial strains S. gor...
Purpose: The aim of the study was to investigate the dynamic process of biofilm adhesion on titanium implant with two surface treatments, either pickled (PT) or moderately roughened by sandblasting with large grits and acid-etched (SLA). Materials and methods: Two types of titanium disks with various surface treatments, i.e. PT and SLA with respective surface roughness (S a ) of 0.3 μm and 1.4 μm, were used as substrata. Three types of biofilms, Streptococcus mutans, Streptococcus sanguinis and polymicrobial biofilms (Microcosm), were grown on the two respective types of titanium disks for 2 h, 1 day, and 7 days. The formation of the biofilms was quantified by colony forming unit (CFU) count, and the structure of the biofilms on the titanium disks was observed by scanning electron microscope (SEM). Results: At 2 h, the number of bacterial cells adhered to SLA surfaces was significantly higher than those to PT surfaces for all tested microorganisms. On day 1 and 7, no differences in biofilm CFU counts were observed between SLA and PT surfaces for S. mutans and Microcosm biofilms, while the S. sanguinis biofilm formation on SLA surfaces was significantly higher than the biofilm on PT surfaces throughout the whole test period. SEM images showed the increasing biofilm formation in time for all types of biofilms. Microcosm biofilms displayed different morphology from the other two single-species biofilms. Conclusions: The higher roughness of a titanium surface would favor the early bacterial adhesion of S. mutans, S. sanguinis and Microcosm. However, as the biofilm became mature, the influence of surface roughness was diminished in a bacterial species dependent manner. Our results underline the importance of dynamic biofilm formation process in the implant study.
The Bacterial Anti-Adhesive Activity of Double-Etched Titanium (DAE) as a Dental Implant Surface
International Journal of Molecular Sciences, 2020
This work aimed to compare the capability of Streptococcus oralis to adhere to a novel surface, double-etched titanium (DAE), in respect to machined and single-etched titanium. The secondary outcome was to establish which topographical features could affect the interaction between the implant surface and bacteria. The samples’ superficial features were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS), and the wetting properties were tested through sessile methods. The novel surface, the double-etched titanium (DAE), was also analyzed with atomic force microscopy (AFM). S. oralis was inoculated on discs previously incubated in saliva, and then the colony-forming units (CFUs), biomass, and cellular viability were measured at 24 and 48h. SEM observation showed that DAE was characterized by higher porosity and Oxygen (%) in the superficial layer and the measurement of the wetting properties showed higher hydrophilicity. AFM confirmed ...
Novel Coatings to Minimize Bacterial Adhesion and Promote Osteoblast Activity for Titanium Implants
Journal of Functional Biomaterials
Titanium nitride (TiN) and silicon carbide (SiC) adhesion properties to biofilm and the proliferation of human osteoblasts were studied. Quaternized titanium nitride (QTiN) was produced by converting the surface nitrogen on TiN to a positive charge through a quaternization process to further improve the antibacterial efficiency. The SiC required a nitridation within the plasma chamber of the surface layer before quaternization could be carried out to produce quaternized SiC (QSiC). The antimicrobial activity was evaluated on the reference strains of Porphyromonas gingivalis for 4 h by fluorescence microscopy using a live/dead viability kit. All the coatings exhibited a lower biofilm coverage compared to the uncoated samples (Ti—85.2%; TiN—24.22%; QTiN—11.4%; SiC—9.1%; QSiC—9.74%). Scanning Electron Microscope (SEM) images confirmed the reduction in P. gingivalis bacteria on the SiC and TiN-coated groups. After 24 h of osteoblast cultivation on the samples, the cell adhesion was obse...
Journal of tissue engineering
Titanium (Ti) plays a predominant role as the material of choice in orthopaedic and dental implants. Despite the majority of Ti implants having long-term success, premature failure due to unsuccessful osseointegration leading to aseptic loosening is still too common. Recently, surface topography modification and biological/non-biological coatings have been integrated into orthopaedic/dental implants in order to mimic the surrounding biological environment as well as reduce the inflammation/infection that may occur. In this review, we summarize the impact of various Ti coatings on cell behaviour both in vivo and in vitro. First, we focus on the Ti surface properties and their effects on osteogenesis and then on bacterial adhesion and viability. We conclude from the current literature that surface modification of Ti implants can be generated that offer both osteoinductive and antimicrobial properties.