Security and Privacy Challenges in Internet of Things (original) (raw)

IJERT-Multi-Access EDGE Computing (MEC): A Mainstay of 5G

International Journal of Engineering Research and Technology (IJERT), 2019

https://www.ijert.org/multi-access-edge-computing-mec-a-mainstay-of-5g https://www.ijert.org/research/multi-access-edge-computing-mec-a-mainstay-of-5g-IJERTCONV7IS12012.pdf The proliferation of Internet of Things (IoT) and the success of rich cloud services have pushed the horizon of a new computing paradigm, edge computing, which calls for processing the data at the edge of the network. Edge computing has the potential to address the concerns of response time requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy. Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies. This paper will review Multi-access edge computing in context to 5G. In addition, this paper analyzes the MEC reference architecture along with its pros and cons.

MEC-enabled 5G Use Cases: A Survey on Security Vulnerabilities and Countermeasures

ACM Computing Surveys, 2022

The future of mobile and internet technologies are manifesting advancements beyond the existing scope of science. The concepts of automated driving, augmented-reality, and machine-type-communication are quite sophisticated and require an elevation of the current mobile infrastructure for launching. The fifth-generation (5G) mobile technology serves as the solution, though it lacks a proximate networking infrastructure to satisfy the service guarantees. Multi-access Edge Computing (MEC) envisages such an edge computing platform. In this survey, we are revealing security vulnerabilities of key 5G-based use cases deployed in the MEC context. Probable security flows of each case are specified, while countermeasures are proposed for mitigating them.

Verticals in 5G MEC-Use Cases and Security Challenges

IEEE Access, 2021

5G is the fifth-generation cellular network satisfying the requirements IMT-2020 (International Mobile Telecommunications-2020) of the International Telecommunication Union. Mobile network operators started using it worldwide in 2019. Generally, 5G achieves exceptionally high values of performance parameters of access and transmission. The application of edge servers has been proposed to facilitate implementing such requirements of 5G, resulting in 5G MEC (Multi-access Edge Computing) technology. Moreover, to optimize services for specific business applications, the concept of 5G vertical industries has been proposed. In this article, we study how the application of the MEC technology affects the functioning of 5G MEC-based services. We consider twelve representative vertical industries of 5G MEC by presenting their essential characteristics, threats, vulnerabilities, and known attacks. Furthermore, we analyze their functional properties, give efficiency patterns and identify the effect of applying the MEC technology in 5G on the resultant network's quality parameters to determine the expected security requirements. As a result of the research, we identify the impact of classified threats on the 5G empowered vertical industries and identify the most sensitive cases to focus on their protection against network attacks in the first place.

Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G

ICT Express

The emergence of Multi-Access Edge Computing (MEC) technology aims to extend cloud computing capabilities to the edge of the wireless access networks, i.e., closer to the end-users. Thus, MEC-enabled 5G wireless systems are envisaged to offer real-time, low-latency, and high-bandwidth access to the radio network resources. Thus, MEC allows network operators to open up their networks to a wide range of innovative services, thereby giving rise to a brand-new ecosystem and a value chain. Furthermore, MEC as an enabling technology will provide new insights into coherent integration of Internet of Things (IoT) in 5G wireless systems. In this context, this paper expounds the four key technologies, including Network Function Virtualization (NFV), Software Defined Networking (SDN), Network Slicing and Information Centric Networking (ICN), that will propel and intensify the integration of MEC IoT in 5G networks. Moreover, our goal is to provide the close alliance between MEC and these four driving technologies in the 5G IoT context and to identify the open challenges, future directions, and concrete integration paths. c

5G's Integration with Edge Computing

International Journal of Networks and Systems, 2024

This study addresses the transformative integration of 5G networks with Edge Computing and Mobile Edge Computing (MEC) and explores the collaborative standards established by industry associations such as ETSI and 3GPP. The article explores the multiple possibilities of this integration, encompassing consumer and operator services, and meeting the demands of new technologies such as augmented reality, virtual reality and the Internet of Things. The strategic coexistence of distributed MEC is explored, while the security and privacy challenges of MEC are explored, emphasizing layered security and blockchain technologies. The study highlights the role of 5G and MEC in reshaping the communications landscape, providing affordable and efficient computing at the network edge, and improving network performance and quality of experience (QoE). As the 5G and MEC ecosystem evolves, the paper predicts a transformative impact on connectivity, speed, reliability and responsiveness across industries, and emphasizes the continued importance of research and development in shaping the future of communications and computing.

Edge Computing in IoT: A 6G Perspective

2021

Edge computing is one of the key driving forces to enable Beyond 5G (B5G) and 6G networks. Due to the unprecedented increase in traffic volumes and computation demands of future networks, Multi-access Edge Computing (MEC) is considered as a promising solution to provide cloud-computing capabilities within the radio access network (RAN) closer to the end users. There has been a huge amount of research on MEC and its potential applications; however, very little has been said about the key factors of MEC deployment to meet the diverse demands of future applications. In this article, we present key considerations for edge deployments in B5G/6G networks including edge architecture, server location and capacity, user density, security etc. We further provide state-of-the-art edge-centric services in future B5G/6G networks. Lastly, we present some interesting insights and open research problems in edge computing for 6G networks.

Integration of ICN and MEC in 5G and Beyond Networks: Mutual Benefits, Use Cases, Challenges, Standardization, and Future Research

IEEE Open Journal of the Communications Society

Multi-access Edge Computing (MEC) is a novel edge computing paradigm that moves cloudbased processing and storage capabilities closer to mobile users by implementing server resources in the access nodes. MEC helps fulfill the stringent requirements of 5G and beyond networks to offer anytimeanywhere connectivity for many devices with ultra-low delay and huge bandwidths. Information-Centric Networking (ICN) is another prominent network technology that builds on a content-centric network architecture to overcome host-centric routing/operation shortcomings and to realize efficient pervasive and ubiquitous networking. It is envisaged to be employed in Future Internet including Beyond 5G (B5G) networks. The consolidation of ICN with MEC technology offers new opportunities to realize that vision and serve advanced use cases. However, various integration challenges are yet to be addressed to enable the wide-scale co-deployment of ICN with MEC in future networks. In this paper, we discuss and elaborate on ICN MEC integration to provide a comprehensive survey with a forward-looking perspective for B5G networks. In that regard, we deduce lessons learned from related works (for both 5G and B5G networks). We present ongoing standardization activities to highlight practical implications of such efforts. Moreover, we render key B5G use cases and highlight the role for ICN MEC integration for addressing their requirements. Finally, we layout research challenges and identify potential research directions. For this last contribution, we also provide a mapping of the latter to ICN integration challenges and use cases.

Edge Computing: Needs, Concerns and Challenges

— In numerous parts of computing, there has been a continuous issue between the centralization and decentralization aspect which prompted to move from mainframes to PCs and local networks in the past, and union of services and applications in clouds and data centers. The expansion of technological advances such as high capacity mobile end-user devices, powerful dedicated connection boxes deployed in most homes, powerful wireless networks, and IoT (Internet of Things) devices along with developing client worries about protection, trust and independence calls for handling the information at the edge of the network. This requires taking the control of computing applications, information and services away from the core to the other the edge of the Internet. Relevance of cloud computing to mobile networks is on an upward spiral. Edge computing can possibly address the concerns of response time requirement, bandwidth cost saving, elastic scalability, battery life constraint, QoS, etc. MEC additionally offers, high bandwidth environment, ultra-low latency that gives real-time access to radio networks at the edge of the mobile network. Currently, it is being used for enabling on-demand elastic access to, or an interaction with a shared pool of reconfigurable computing resources such as servers, peer devices, storage, applications, and at the edge of the wireless network in close proximity to mobile users. It overcomes obstacles of traditional central clouds by offering wireless network information and local context awareness as well as low latency and bandwidth conservation. In this paper, we introduce edge computing and edge cloud, followed by why do we need edge computing, its classifications, various frameworks, applications and several case studies. Finally, we will present several challenges, concerns and future scope in the field of edge computing. Index Terms— Mobile Edge Computing (MEC), Internet of Things (IoT) ——————————  ——————————

Architectures, Security Issues, and Usage Scenarios of EC

UMT Artificial Intelligence Review

Demand for the digital media is increasing exponentially due to the data generated with regards to IoT devices, thus for these growing needs certain advancements have been made in various technologies like cloud computing which has transitioned to fog and edge computing. The differences between each technology relate to many factors like security, privacy, Big data issues, bandwidth, and radio access networking. Thus, we have discussed the problems faced by older versions of cloud computing and how Mobile Edge Computing (MEC) helps to overcome most of these problems. MEC is explored where it offers real-time information thus providing benefits to the end-users. The growth of MEC is such that, as discussed further, it is used in normal habitual routines like real-time grocery shopping. This paper explores the various architectures, use cases and security aspects of edge computing.