Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G (original) (raw)
Related papers
Five Driving Forces of Multi-Access Edge Computing
ArXiv, 2018
The emergence of Multi-Access Edge Computing (MEC) technology aims at extending cloud computing capabilities to the edge of the wireless access networks. MEC provides real-time, high-bandwidth, low-latency access to radio network resources, allowing operators to open their networks to a new ecosystem and value chain. Moreover, it will provide a new insight to the design of future 5th Generation (5G) wireless systems. This paper describes five key technologies, including Network Function Vitalization (NFV), Software Defined Networking (SDN), Network Slicing, Information Centric Networking (ICN) and Internet of Things (IoT), that intensify the widespread of MEC and its adoption. Our goal is to provide the associativity between MEC and these five driving technologies in 5G context while identifying the open challenges, future directions, and tangible integration paths.
IJERT-Multi-Access EDGE Computing (MEC): A Mainstay of 5G
International Journal of Engineering Research and Technology (IJERT), 2019
https://www.ijert.org/multi-access-edge-computing-mec-a-mainstay-of-5g https://www.ijert.org/research/multi-access-edge-computing-mec-a-mainstay-of-5g-IJERTCONV7IS12012.pdf The proliferation of Internet of Things (IoT) and the success of rich cloud services have pushed the horizon of a new computing paradigm, edge computing, which calls for processing the data at the edge of the network. Edge computing has the potential to address the concerns of response time requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy. Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies. This paper will review Multi-access edge computing in context to 5G. In addition, this paper analyzes the MEC reference architecture along with its pros and cons.
Enabling Heterogeneous IoT Networks over 5G Networks with Ultra-Dense Deployment—Using MEC/SDN
Electronics
The Internet of things (IoT) is the third evolution of the traditional Internet that enables interaction and communication among machines. Many IoT platforms and networks have been developed, and recently, market sectors have started to develop specific IoT applications and services. Integrating heterogeneous IoT networks with the existing ones, mainly with the cellular networks, is a great demand. IoT represents one of the main use cases of the fifth-generation (5G) cellular system as announced by the 3rd Generation Partnership Project (3GPP) and the International Telecommunication Union (ITU). Integrating IoT networks with 5G networks face many challenges related to dense deployment and a massive number of expected connected devices. Thus, IoT network availability and scalability are the main requirements that should be achieved. To this end, this work provides a framework for integrating heterogeneous IoT networks with the 5G networks. The proposed system considers dense deployme...
IEEE Access
Fifth-Generation (5G) mobile cellular networks provide a promising platform for new, innovative and diverse IoT applications, such as ultra-reliable and low latency communication, real-time and dynamic data processing, intensive computation, and massive device connectivity. End-to-End (E2E) network slicing candidates present a promising approach to resource allocation and distribution that permit operators to flexibly provide scalable virtualized and dedicated logical networks over common physical infrastructure. Though network slicing promises the provision of services on demand, many of its use cases, such as self-driving cars and Google's Stadia, would require the integration of a Multi-Access Edge Computing (MEC) platform in 5G networks. Edge Computing is envisioned as one of the key drivers for 5G and Sixth-Generation (6G) mobile cellular networks, but its role in network slicing remains to be fully explored. We investigate MEC and network slicing for the provision of 5G service focused use cases. Recently, changes to the cloud-native 5G core are a focus with MEC use cases providing network scalability, elasticity, flexibility, and automation. A cloud-native microservices architecture, along with its potential use cases for 5G network slicing, is envisioned. This paper also elaborates on the recent advances made in enabling E2E network slicing, its enabling technologies, solutions, and current standardization efforts. Finally, this paper identifies open research issues and challenges and provides possible solutions and recommendations. INDEX TERMS Network slicing, software defined networking, multi-access edge computing, cloud native, ultra-reliable, and low latency communication.
IEEE Communications Surveys & Tutorials, 2017
Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies. It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options. In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multitenancy support for application developers, content providers, and third parties. Finally, this paper overviews the current standardization activities and elaborates further on open research challenges.
IEEE Open Journal of the Communications Society
Multi-access Edge Computing (MEC) is a novel edge computing paradigm that moves cloudbased processing and storage capabilities closer to mobile users by implementing server resources in the access nodes. MEC helps fulfill the stringent requirements of 5G and beyond networks to offer anytimeanywhere connectivity for many devices with ultra-low delay and huge bandwidths. Information-Centric Networking (ICN) is another prominent network technology that builds on a content-centric network architecture to overcome host-centric routing/operation shortcomings and to realize efficient pervasive and ubiquitous networking. It is envisaged to be employed in Future Internet including Beyond 5G (B5G) networks. The consolidation of ICN with MEC technology offers new opportunities to realize that vision and serve advanced use cases. However, various integration challenges are yet to be addressed to enable the wide-scale co-deployment of ICN with MEC in future networks. In this paper, we discuss and elaborate on ICN MEC integration to provide a comprehensive survey with a forward-looking perspective for B5G networks. In that regard, we deduce lessons learned from related works (for both 5G and B5G networks). We present ongoing standardization activities to highlight practical implications of such efforts. Moreover, we render key B5G use cases and highlight the role for ICN MEC integration for addressing their requirements. Finally, we layout research challenges and identify potential research directions. For this last contribution, we also provide a mapping of the latter to ICN integration challenges and use cases.
IEEE Access, 2018
Existing radio access networks (RANs) allow only for very limited sharing of the communication and computation resources among wireless operators and heterogeneous wireless technologies. We introduce the LayBack architecture to facilitate communication and computation resource sharing among different wireless operators and technologies. LayBack organizes the RAN communication and multi-access edge computing (MEC) resources into layers, including a devices layer, a radio node [enhanced Node B (eNB), Access Point (AP)] layer, and a gateway layer. LayBack positions the "coordination point" between the different operators and technologies just behind the gateways and thus consistently decouples the fronthaul from the backhaul. The coordination point is implemented through a software defined networking (SDN) switching layer that connects the gateways to the backhaul (core) network layer. A unifying SDN orchestrator implements an SDN based management framework that centrally manages the fronthaul and backhaul communication and computation resources and coordinates the cooperation between different wireless operators and technologies. We illustrate the capabilities of the introduced LayBack architecture and SDN based management framework through a case study on a novel fluid cloud RAN (CRAN) function split. The fluid CRAN function split partitions the RAN functions into function blocks that are flexibly assigned to MEC nodes, effectively implementing the RAN functions through network function virtualization (NFV). We find that for non-uniform call arrivals, the computation of the function blocks with resource sharing among operators increases a revenue rate measure by more than 25% compared to the conventional CRAN where each operator utilizes only its own resources.
Edge Computing in IoT: A 6G Perspective
2021
Edge computing is one of the key driving forces to enable Beyond 5G (B5G) and 6G networks. Due to the unprecedented increase in traffic volumes and computation demands of future networks, Multi-access Edge Computing (MEC) is considered as a promising solution to provide cloud-computing capabilities within the radio access network (RAN) closer to the end users. There has been a huge amount of research on MEC and its potential applications; however, very little has been said about the key factors of MEC deployment to meet the diverse demands of future applications. In this article, we present key considerations for edge deployments in B5G/6G networks including edge architecture, server location and capacity, user density, security etc. We further provide state-of-the-art edge-centric services in future B5G/6G networks. Lastly, we present some interesting insights and open research problems in edge computing for 6G networks.
5G's Integration with Edge Computing
International Journal of Networks and Systems, 2024
This study addresses the transformative integration of 5G networks with Edge Computing and Mobile Edge Computing (MEC) and explores the collaborative standards established by industry associations such as ETSI and 3GPP. The article explores the multiple possibilities of this integration, encompassing consumer and operator services, and meeting the demands of new technologies such as augmented reality, virtual reality and the Internet of Things. The strategic coexistence of distributed MEC is explored, while the security and privacy challenges of MEC are explored, emphasizing layered security and blockchain technologies. The study highlights the role of 5G and MEC in reshaping the communications landscape, providing affordable and efficient computing at the network edge, and improving network performance and quality of experience (QoE). As the 5G and MEC ecosystem evolves, the paper predicts a transformative impact on connectivity, speed, reliability and responsiveness across industries, and emphasizes the continued importance of research and development in shaping the future of communications and computing.
Multi-Access Edge Computing Deployments for 5G Networks
INTERNATIONAL ENGINEERING CONFERENCE IEC 2019, 2019
The growth of the telecommunication industry is fast-paced with groundbreaking engineering achievements. Notwithstanding the technological advancement in the industry, it had continued to cope with the phenomenon of resource constraint in portable mobile telecommunication devices compared to fixed and tethered devices. Portable mobile handheld devices have very low computational, storage and energy carrying capacity occasioned by the needs to satisfy portability, very small form factor, ergonomics, style and trends. Solutions such as cloudlets, cyber foraging, mobile cloud computing (MCC), and more recently but most applicable, multi-access edge computing (MEC) have been proffered with different application methodologies including computational offloading, distributed computing, thin clients, middleware, mobile environment cloning as well as representational state transfer. There is a need to satisfy requirements of new and emerging use cases, especially the deployments of 5G coming up with applications such as virtual reality (VR), augmented reality (AR), intelligent transport systems (ITS), connected autonomous vehicle (CAV), smart hospitals, ultra high definition multi-feed live streaming, etc. The usage patterns of most of these different applications, though not always, is ephemeral and on-demand, except that the demand will be numerous, huge, asymmetric and highly latency-sensitive in terms of needs for computation, storage and analytics while at the fringe of the network where data are being generated and results being applied. In this research, we evaluated 5G end-to-end transport for vantage location of MEC server to achieve low user plane latency.