The link between gut microbiota and atherosclerosis (original) (raw)
Related papers
Metabolic products of the intestinal microbiome and extremes of atherosclerosis
Atherosclerosis, 2018
Background and aims: There is increasing awareness that the intestinal microbiome plays an important role in human health. We investigated its role in the burden of carotid atherosclerosis, measured by ultrasound as total plaque area. Methods: Multiple regression with traditional risk factors was used to identify three phenotypes among 316/3,056 patients attending vascular prevention clinics. Residual score (RES; i.e. the distance off the regression line, similar to standard deviation) was used to identify the 5% of patients with much less plaque than predicted by their risk factors (Protected, RES <-2), the 90% with about as much plaque as predicted (Explained, RES-2 to 2), and the 5% with much more plaque than predicted (Unexplained RES >2). Metabolic products of the intestinal microbiome that accumulate in renal failure-gut-derived uremic toxins (GDUT)-were assayed in plasma by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Results: Plasma levels of trimethylamine n-oxide (TMAO), p-cresyl sulfate, p-cresyl glucuronide, and phenylacetylglutamine were significantly lower among patients with the Protected phenotype, and higher in those with the Unexplained phenotype, despite no significant differences in renal function or in dietary intake of nutrient precursors of GDUT. In linear multiple regression with a broad panel of risk factors, TMAO (p = 0.011) and p-cresyl sulfate (p = 0.011) were significant independent predictors of carotid plaque burden. Conclusions: The intestinal microbiome appears to play an important role in atherosclerosis. These findings raise the possibility of novel approaches to treatment of atherosclerosis such as fecal transplantation and probiotics.
Role of gut microbiota in the modulation of atherosclerosis-associated immune response
Frontiers in Microbiology, 2015
Inflammation and metabolic abnormalities are linked to each other. At present, pathogenic inflammatory response was recognized as a major player in metabolic diseases. In humans, intestinal microflora could significantly influence the development of metabolic diseases including atherosclerosis. Commensal bacteria were shown to activate inflammatory pathways through altering lipid metabolism in adipocytes, macrophages, and vascular cells, inducing insulin resistance, and producing trimethylamine-N-oxide. However, gut microbiota could also play the atheroprotective role associated with anthocyanin metabolism and administration of probiotics and their components. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis.
The Gut Microbiome and Cardiovascular Disease
Cureus, 2021
Cardiovascular disease (CVD) is currently the leading cause of death worldwide. Although many well-known conditions cause CVD, recent research has suggested that alterations to the gut microbiome may also promote CVD. The gastrointestinal tract houses trillions of bacteria, some of which in large numbers are considered to be part of a healthy gut microbiome profile. These "good" bacteria have the ability to process and digest complex carbohydrates into short-chain fatty acids (SFCA). These SCFA serve as signaling molecules, immune-modulating molecules, and sources of energy. However, with gut dysbiosis, there is an overgrowth of certain bacteria and these bacteria overly produce phosphatidylcholine, choline, and carnitine into the waste product trimethylamine-N-oxide (TMAO). Elevated TMAO levels are associated with an increased risk of atherosclerosis, myocardial infarction, thrombosis, and stroke. Therefore, introducing therapeutic interventions that alter a dysbiotic gut profile back to a healthy gut microbiome may be the key to reducing the incidence of cardiovascular disease in some conditions. The purpose of this review is to critically examine and consolidate the relevant information bearing on this concept. Our goal is to provide the informational framework for the possible use of microbiome modification as an optional therapeutic modality.
Nature of Human Gut Microbiome: How do they play in Cardiovascular Disease?
Journal of Cardiovascular Medicine and Cardiology, 2018
Cardiovascular disease is the number one killer of death around the world. Most of the cardiovascular diseases are caused by sedentary life style, bad eating habit, tobacco smoking, high alcohol intake, dyslipidemia and genetic factors .Recently the idea of human microbiome science has emerged in diseases pathogenesis .The human gut is a house of trillions of microbial fl oral. Since a couple of decades ago, there has been interesting insights into the human gut microbiota and have highlighted its increasingly association to cardiovascular (CV) and metabolic diseases. Trimethylamine N-oxide (TMAO), which is a metabolic product from gut microbiota plays a central role in cardiovascular disease pathogenesis. Nature of microbial inhabitants within the host has been noticed by the numbers of scientists and researchers to understand more about the hidden mechanism of diseases pathogenesis including cardiovascular disease, metabolic and autoimmune diseases and it has become a good hope to develop new drug designs to prevent metabolic and cardiovascular disease in near future.
Cardiovascular Research
The human gut microbiota is the microbial ecosystem in the small and large intestines of humans. It has been naturally preserved and evolved to play an important role in the function of the gastrointestinal tract and the physiology of its host, protecting from pathogen colonization, and participating in vitamin synthesis, the functions of the immune system, as well as glucose homeostasis and lipid metabolism, among others. Mounting evidence from animal and human studies indicates that the composition and metabolic profiles of the gut microbiota are linked to the pathogenesis of cardiovascular disease, particularly arterial hypertension, atherosclerosis, and heart failure. In this review article, we provide an overview of the function of the human gut microbiota, summarize, and critically address the evidence linking compositional and functional alterations of the gut microbiota with atherosclerosis and coronary artery disease and discuss the potential of strategies for therapeutical...
The influence of gut microbiota in cardiovascular diseases—a brief review
Porto Biomedical Journal, 2021
Lately, the gut microbiota has emerged as an important mediator of the development and the outcomes of certain diseases. It's well known that the gut microbiota plays an important role in maintaining human health. Still far from being completely understood and analyzed is the complexity of this ecosystem, although a close relationship between the gut microbiota and cardiovascular diseases (CVD) has been established. A loss of diversity in the microbiota will lead to physiological changes, which can improve inflammatory or infection states like atherosclerosis and hypertension, the basic pathological process of CVD. Targeting the gut microbiota and its metabolites are new and promising strategies for the treatment and prognosis of CVD.
Advanced Gut & Microbiome Research
The human gut is colonized by a variety of microorganisms especially bacteria. There are multiple evidences that gut microflora dysbiosis is a novel risk factor for development of various intestine-related diseases such as irritable bowel syndrome and inflammatory bowel disease as well as nonintestinal diseases including obesity, type II diabetes, and cardiovascular diseases. A mutual relationship among the host’s immune system and the metabolites produced by the gut microflora, including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and bile acids, is present. Alterations in the host-microbial interaction lead to impaired homeostasis and thus contribute towards the activation of several pathways that causes progression of cardiovascular diseases. This review summarizes the role of gut microflora dysbiosis in the development and progression of atherosclerosis, coronary artery disease, and hypertension. Dysbiosis has been implicated in the pathogenesis of atheroscle...
The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation
Frontiers in Cellular and Infection Microbiology
In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbio...
Recent advances in modulation of cardiovascular diseases by the gut microbiota
Journal of Human Hypertension
The gut microbiota has recently gained attention due to its association with cardiovascular health, cancers, gastrointestinal disorders, and non-communicable diseases. One critical question is how the composition of the microbiota contributes to cardiovascular diseases (CVDs). Insightful reviews on the gut microbiota, its metabolites and the mechanisms that underlie its contribution to CVD are limited. Hence, the aim of this review was to describe linkages between the composition of the microbiota and CVD, CVD risk factors such as hypertension, diet, ageing, and sex differences. We have also highlighted potential therapies for improving the composition of the gut microbiota, which may result in better cardiovascular health.
Gut Microbiota and Cardiovascular Disease: Symbiosis Versus Dysbiosis
Curr Med Chem , 2021
The gut microbiome interacts with host physiology through various mechanisms, including the cardiovascular (CV) system. A healthy microbiome has the ability to process and digest complex carbohydrates into short-chain fatty acids (SCFA). These SCFA function as signaling molecules, immune-modulating molecules, and energy sources. However, when the microbiome is altered, it produces gut dysbiosis with overgrowth of certain bacteria that may lead to overproduction of trimethylamine-N-oxide (T-MAO) from the metabolism of phosphatidylcholine, choline, and carnitine; dysbiosis also leads to increased intestinal permeability allowing the microbiome-derived lipopolysaccharide (LPS), a bacterial endotoxin, to enter the blood circulation, triggering inflammatory responses. An altered gastrointestinal (GI) tract environment and microbiome-derived metabolites are associated with CV events. Disrupted content and function of the microbiome leading to elevated TMAO and LPS levels, altered bile acid metabolism pathways, and SCFA production are associated with an increased risk of CV diseases (CVD), including atherosclerosis, myocardial infarction, thrombosis, arrhythmias, and stroke. Therapeutic interventions that may favorably influence a dysbiotic GI tract profile and promote a healthy microbiome may benefit the CV system and lead to a reduction of CVD incidence in certain situations. These issues are herein reviewed with a focus on the spectrum of microbiota-related CVD, the mechanisms involved, and the potential use of microbiome modification as a possible therapeutic intervention.