The Role Of Fibroblast Growth Factors In Cortical Regeneration After Perinatal Hypoxia: A Model For Neurological Recovery In Premature Children (original) (raw)

Systemic hypoxia differentially affects neurogenesis during early mouse brain maturation

Brain and Development, 2012

Background: Cerebral tissue oxygen level modifies crucial processes of neurogenesis, glial and neuronal development during physiological and hypoxic conditions. Whether hypoxia-sensitive factors such as doublecortin (DCX) and hypoxia-inducible transcription factor (HIF)-regulated CXCR4 and SDF-1 modify and activate adaptation to hypoxia in developing brain is not well understood. Present study investigated maturational regulation of oxygen-sensitive developmental genes and proteins in developing mouse brain in relation to the degree of hypoxia. Methods: Physiological expression of HIF-1, CXCR4, SDF-1 and DCX were analyzed in the brain of C57/BL6 mice (P0-P60). In addition, mice (P0, P7) were exposed to normoxia, acute (8% O 2 , 6 h) or chronic hypoxia (10% O 2 , 7 d) followed by reoxygenation. Gene expression was analyzed by quantitative PCR, proteins were quantified by Western blot analysis and immunohistochemistry. Results: Cerebral HIF-1a protein, CXCR4 and DCX mRNA levels showed maturational stage-related peak levels at P0/P1, whereas SDF-1 mRNA levels were highest at P17. CXCR4 and SDF-1 mRNA levels were not altered in response to hypoxia. Whereas DCX mRNA levels significantly increased during acute hypoxia, down-regulation of DCX transcripts was found in response to chronic hypoxia compared to controls, and these changes were related to specifically vulnerable brain regions. Conclusions: Maturational stage-related dynamic changes of HIF-1a, CXCR4, SDF-1 and DCX may reflect involvement of hypoxia-regulated systems in important developmental regulatory processes of the developing brain. Extending the knowledge of differential effects of hypoxia on neurogenesis and dynamic regulatory networks present data provide a basis for future research on gestational age-specific neuroprotective options.

Disrupted synaptic development in the hypoxic newborn brain

Proceedings of the National Academy of Sciences of the United States of America, 2002

Infants born prematurely risk significant lifelong cognitive disability, representing a major pediatric health crisis. The neuropathology of this cohort is accurately modeled in mice subjected to sublethal postnatal hypoxia. Massively parallel transcriptome analysis using cDNA microchips (9,262 genes), combined with immunohistochemical and protein assays, reveals that sublethal hypoxia accentuates genes subserving presynaptic function, and it suppresses genes involved with synaptic maturation, postsynaptic function, and neurotransmission. Other significantly affected pathways include those involved with glial maturation, vasculogenesis, and components of the cortical and microtubular cytoskeleton. These patterns reveal a global dysynchrony in the maturation programs of the hypoxic developing brain, and offer insights into the vulnerabilities of processes that guide early postnatal cerebral maturation.

Mild, non-lesioning transient hypoxia in the newborn rat induces delayed brain neurogenesis associated with improved memory scores

Neuroscience, 2006

Although neonatal hypoxia can lead to brain damage, mild hypoxic episodes may be beneficial, as illustrated by tolerance induction by preconditioning, a process that might involve neurogenesis. To examine if brief hypoxia in newborn rats could stimulate the generation of neurons, pups were exposed for 5 min to 100% N 2 . Cell density and apoptosis were monitored in various brain regions and cell proliferation was studied by the incorporation of bromodeoxyuridine. Hypoxia did not result in detectable cell death but promoted cell proliferation in the ensuing three weeks in the subventricular zone and hippocampal dentate gyrus, with increased cell density in hippocampus CA1 pyramidal cells and granular layer of the dentate gyrus. Newly generated cells expressed neuronal markers (NeuroD or neuronal nuclear antigen) and were able to migrate from germinative zones to specific sites, in particular from the subventricular zone to the CA1 layer along the posterior periventricle. Neurogenesis was associated with an early activation of the extracellular regulated kinase 1/2 pathway, and pre-hypoxic administration of U0126, an inhibitor of mitogen-activated protein kinase kinase, impaired hypoxia effect on cell proliferation. Neurobehavioral capacities of hypoxic rats paralleled those of controls, but early exposure to hypoxia was associated with significantly improved memory retrieval scores at 40 days. In conclusion, brief neonatal hypoxia may trigger delayed generation of potentially functional neurons without concomitant cell death. This may constitute an interesting model for studying cell key events involved in the induction of neurogenesis.

Effect of delayed treatment with basic fibroblast growth factor on the survival of striatal spiny projection neurons after perinatal hypoxia–ischemia

International Congress Series, 2003

Recent studies suggest that delayed treatment with growth factors, including basic fibroblast growth factor (bFGF), may protect against neuronal death after brain injury. This delayed protective effect is particularly relevant to hypoxic-ischemic brain injury during the third trimester of pregnancy, since detection of the insult is much more likely once the fetus is born. The effect of delayed growth factor treatment has only been partly characterized, however, after perinatal hypoxic-ischemic injury. This injury is thought to be a major cause of motor disorders (e.g. cerebral palsy) and mental retardation in children. In both humans and rats, one of the damaged brain regions after perinatal hypoxia-ischemia is the striatum. We therefore determined the effect of delayed treatment with basic fibroblast growth factor at 24 and 48 h after perinatal hypoxia-ischemia on nerve cell survival within the rat striatum. The total number of surviving striatal spiny projection neurons was measured using modern stereological methods. It was found that delayed treatment with basic fibroblast growth factor did not improve the total number of surviving spiny projection neurons within the rat striatum after perinatal hypoxia-ischemia. Additional studies investigating the possibility of more subtle protective effects on surviving neurons by this treatment paradigm are warranted.

Molecular Pathways of Altered Brain Development in Fetuses Exposed to Hypoxia

International Journal of Molecular Sciences

Perinatal hypoxia is a major cause of neurodevelopmental impairment and subsequent motor and cognitive dysfunctions; it is associated with fetal growth restriction and uteroplacental dysfunction during pregnancy. This review aims to present the current knowledge on brain development resulting from perinatal asphyxia, including the causes, symptoms, and means of predicting the degree of brain damage. Furthermore, this review discusses the specificity of brain development in the growth-restricted fetus and how it is replicated and studied in animal models. Finally, this review aims at identifying the least understood and missing molecular pathways of abnormal brain development, especially with respect to potential treatment intervention.

Mechanisms of mouse neural precursor expansion after neonatal hypoxia-ischemia

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015

Neonatal hypoxia-ischemia (H-I) is the leading cause of brain damage resulting from birth complications. Studies in neonatal rats have shown that H-I acutely expands the numbers of neural precursors (NPs) within the subventricular zone (SVZ). The aim of these studies was to establish which NPs expand after H-I and to determine how leukemia inhibitory factor (LIF) insufficiency affects their response. During recovery from H-I, the number of Ki67(+) cells in the medial SVZ of the injured hemisphere increased. Similarly, the number and size of primary neurospheres produced from the injured SVZ increased approximately twofold versus controls, and, upon differentiation, more than twice as many neurospheres from the damaged brain were tripotential, suggesting an increase in neural stem cells (NSCs). However, multimarker flow cytometry for CD133/LeX/NG2/CD140a combined with EdU incorporation revealed that NSC frequency diminished after H-I, whereas that of two multipotential progenitors an...

Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity

Experimental Neurology, 2004

Premature human infants frequently suffer from periventricular leukomalacia (PVL) characterized by the loss of central myelinated tracts in the brain [Neuropathology, 22 (2002) 193]. Rodent chronic sublethal hypoxia (CSH) from P3 to 33 (postnatal day 3-33) provides a model for PVL characterized by cerebral ventriculomegaly and reductions in cerebral white matter volume [Brain Res. Dev. Brain Res. 111 (1998) 197; Proc. Natl. Acad. Sci. USA 100 (2003) 11718]. Here, we demonstrate that mice exposed to CSH from P3 to P33 followed by normoxia from P33 to P75 continue to exhibit a locomotor hyperactivity that resembles behavioral changes observed in some human children with very low birth weights. Because periventricular white matter is specifically lost in PVL, we examined the expression of oligodendrocyte proteins. Hypoxic rearing dramatically decreases the level of the axon outgrowth inhibitor Nogo-A in oligodendrocytes of CNS white matter at P12. The Nogo-A decrease exceeds the moderate decrease in another myelin protein, myelin associated glycoprotein (MAG). Although myelin protein expression returns to normal by maturity (P75), persistent abnormalities in axonal trajectories are detectable. Anterograde axonal tracing from motor cortex demonstrates ectopic corticofugal fibers in the corticospinal tract (CST), corpus callosum, and caudate nucleus of adult animals reared in CSH. Thus, hypoxia-induced reduction in myelin-derived axon outgrowth inhibitors appears to contribute axonal misconnection to the pathology of very low birth weight infants.

HYPOXIA AND BRAIN DEVELOPMENT

Progress in Neurobiology, 1996

Hypoxia threatens brain function during the entire life-span starting from early fetal age up to senescence. This review compares the short-term, long-term and life-spanning effects of fetal chronic hypoxia and neonatal anoxia on several behavioural paradigms including novelty-induced spontaneous and learning behaviours. Furthermore, it reveals that perinatal hypoxia is an additional threat to neurodegeneration and decline of cognitive and other behaviours during the aging process. Prenatal hypoxia evokes a temporary delay of ingrowth of cholinergic and serotonergic fibres into the hippocampus and neocortex, and causes an enhanced neurodegeneration of 5-HT-ir axons during aging. Neonatal anoxia suppresses hippocampal ChAT activity and up-regulates muscarinic receptor sites for 3H-QNB and 3H-pirenzepine binding in the hippocampus in the early postnatal age. The altered development of axonal arborization and pre- and postsynaptic cholinergic functions may be an important underlying mechanism to explain the behavioural deficits. As far as the cellular mechanisms of perinatal hypoxia is concerned, our primary aim was to study the putative importance of Ca2+ homeostasis of developing neurons by means of pharmacological interventions and by measuring the development of immunoexpression of Ca(2+)-binding proteins. We assessed that nimodipine, an L-type calcium channel blocker, prevented or attenuated the adverse behavioural and neurochemical effects of perinatal hypoxias, while it enhanced the early postnatal development of ir-Ca(2+)-binding proteins. The results are discussed in the context of different related research areas on brain development and hypoxia and ischaemia.

Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation

The Journal of Pathology, 2012

Premature babies are at high risk for both infantile apnoea and long-term neurobehavioural deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development, and synapse formation mainly occur in the third trimester of gestation and first postnatal year, infantile apnoea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 and 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix, and cerebellum, but not in the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG, and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultrastructural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin, and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of synapsin I, synaptophysin, and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioural sequelae.