Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity (original) (raw)
Related papers
The Journal of Pathology, 2012
Premature babies are at high risk for both infantile apnoea and long-term neurobehavioural deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development, and synapse formation mainly occur in the third trimester of gestation and first postnatal year, infantile apnoea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 and 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix, and cerebellum, but not in the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG, and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultrastructural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin, and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of synapsin I, synaptophysin, and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioural sequelae.
Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligoden-drocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with lifelong neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed
Neonatal Hypoxia Results in Peripheral Nerve Abnormalities
The American Journal of Pathology, 2017
Although the adverse effects of neonatal hypoxia associated with premature birth on the central nervous system are well known, the contribution of hypoxic damage to the peripheral nervous system (PNS) has not been addressed. We demonstrate that neonatal hypoxia results in hypomyelination and delayed axonal sorting in mice leading to electrophysiological and motor deficits that persist into adulthood. These findings support a potential role for PNS hypoxic damage in the motor impairment that results from premature birth and suggest that therapies designed to protect the PNS may provide clinical benefit.
Journal of Cellular and Molecular Medicine
Hypoxic-ischaemic episodes experienced at the perinatal period commonly lead to a development of neurological disabilities and cognitive impairments in neonates or later in childhood. Clinical symptoms often are associated with the observed alterations in white matter in the brains of diseased children, suggesting contribution of triggered oligodendrocyte/myelin pathology to the resulting disorders. To date, the processes initiated by perinatal asphyxia remain unclear, hampering the ability to develop preventions. To address the issue, the effects of temporal hypoxia-ischaemia on survival, proliferation and the myelinating potential of oligodendrocytes were evaluated ex vivo using cultures of hippocampal organotypic slices and in vivo in rat model of perinatal asphyxia. The potential engagement of gelatinases in oligodendrocyte maturation was assessed as well. The results pointed to a significant decrease in the number of oligodendrocyte progenitor cells (OPCs), which is compensated for to a certain extent by the increased rate of OPC proliferation. Oligodendrocyte maturation seemed however to be significantly altered. An ultrastructural examination of selected brain regions performed several weeks after the insult showed however that the process of developing central nervous system myelination proceeds efficiently resulting in enwrapping the majority of axons in compact myelin. The increased angiogenesis in response to neonatal hypoxic-ischaemic insult was also noticed. In conclusion, the study shows that hypoxic-ischaemic episodes experienced during the most active period of nervous system development might be efficiently compensated for by the oligodendroglial cell response triggered by the insult. The main obstacle seems to be the inflammatory process modulating the local microenvironment.
2013
Chronic perinatal hypoxia causes a significant loss of total brain volume, brain weight and cortical neuron number. These measures are completely reversed following recovery in normoxic conditions. Yet, the cellular and molecular mechanisms underlying this plasticity are not well understood. Here, we show that hypoxia from postnatal days 3 (P3) to 10-11 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume. Excitatory neuron numbers were completely recovered one month after the insult, but the mice showed a residual deficit in GABAergic interneurons. In contrast, hypoxic mice carrying a disrupted fibroblast growth factor receptor-1 (Fgfr1) gene in GFAP + cells [Fgfr1 conditional knockout (cKO)], showed a persistent loss of excitatory cortical neurons and an increased interneuron defect. Labeling proliferating progenitors
Molecular Pathways of Altered Brain Development in Fetuses Exposed to Hypoxia
International Journal of Molecular Sciences
Perinatal hypoxia is a major cause of neurodevelopmental impairment and subsequent motor and cognitive dysfunctions; it is associated with fetal growth restriction and uteroplacental dysfunction during pregnancy. This review aims to present the current knowledge on brain development resulting from perinatal asphyxia, including the causes, symptoms, and means of predicting the degree of brain damage. Furthermore, this review discusses the specificity of brain development in the growth-restricted fetus and how it is replicated and studied in animal models. Finally, this review aims at identifying the least understood and missing molecular pathways of abnormal brain development, especially with respect to potential treatment intervention.
Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia
The Journal of …, 2003
Neonatal hypoxia-ischemia in the preterm human leads to selective injury to the subcortical developing white matter, which results in periventricular leukomalacia (PVL), a condition associated with abnormal neurodevelopment. Maturation-dependent vulnerability of late oligodendrocyte progenitors is thought to account for the cellular basis of this condition. A high frequency of cognitive and sensory deficits with decreasing gestational age suggests pervasive abnormalities of cortical development. In a neonatal rat model of hypoxicischemic injury that produces the characteristic pattern of subcortical injury associated with human PVL, selective subplate neuron death is seen. The premature subplate neuron death occurs after thalamic axons have reached their targets in cortex. Thus, as expected, thalamocortical connections form normally, including patterned connections to somatosensory cortex. However, deficits in motor function still occur, as in babies with PVL. Subplate neuron cell death in PVL provides another mechanism for abnormal neurodevelopment after neonatal hypoxia-ischemia.
Developmental Science, 2006
Hypoxia (H) and hypoxia-ischemia (HI) are major causes of foetal brain damage with long-lasting behavioral implications. The effect of hypoxia has been widely studied in human and a variety of animal models. In the present review, we summarize the latest studies testing the behavioral outcomes following prenatal hypoxia/hypoxia-ischemia in rodent models. Delayed development of sensory and motor reflexes during the first postnatal month of rodent life was observed by various groups. Impairment of motor function, learning and memory was evident in the adult animals. Activation of the signaling leading to cell death was detected as early as three hours following H/HI. An increase in the counts of apoptotic cells appeared approximately three days after the insult and peaked about seven days later. Around 14-20 days following the H/HI, the amount of cell death observed in the tissue returned to its basal levels and cell loss was apparent in the brain tissue. The study of the molecular mechanism leading to brain damage in animal models following prenatal hypoxia adds valuable insight to our knowledge of the central events that account for the morphological and functional outcomes. This understanding provides the starting point for the development and improvement of efficient treatment and intervention strategies.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
Neonatal hypoxia-ischemia in the preterm human leads to selective injury to the subcortical developing white matter, which results in periventricular leukomalacia (PVL), a condition associated with abnormal neurodevelopment. Maturation-dependent vulnerability of late oligodendrocyte progenitors is thought to account for the cellular basis of this condition. A high frequency of cognitive and sensory deficits with decreasing gestational age suggests pervasive abnormalities of cortical development. In a neonatal rat model of hypoxic-ischemic injury that produces the characteristic pattern of subcortical injury associated with human PVL, selective subplate neuron death is seen. The premature subplate neuron death occurs after thalamic axons have reached their targets in cortex. Thus, as expected, thalamocortical connections form normally, including patterned connections to somatosensory cortex. However, deficits in motor function still occur, as in babies with PVL. Subplate neuron cell ...