Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer (original) (raw)
Related papers
Identification and functional screening of microRNAs highly deregulated in colorectal cancer
Journal of Cellular and Molecular Medicine, 2012
MicroRNAs (miRNAs) constitute a robust regulatory network with post-transcriptional regulatory efficiency for almost one half of human coding genes, including oncogenes and tumour suppressors. We determined the expression profile of 667 miRNAs in colorectal cancer (CRC) tissues and paired non-tumoural tissues and identified 42 differentially expressed miRNAs. We chose miR-215, miR-375, miR-378, miR-422a and miR-135b for further validation on an independent cohort of 125 clinically characterized CRC patients and for in vitro analyses. MiR-215, miR-375, miR-378 and miR-422a were significantly decreased, whereas miR-135b was increased in CRC tumour tissues. Levels of miR-215 and miR-422a correlated with clinical stage. MiR-135b was associated with higher pre-operative serum levels of CEA and CA19-9. In vitro analyses showed that ectopic expression of miR-215 decreases viability and migration, increases apoptosis and promotes cell cycle arrest in DLD-1 and HCT-116 colon cancer cell lines. Similarly, overexpression of miR-375 and inhibition of miR-135b led to decreased viability. Finally, restoration of miR-378, miR-422a and miR-375 inhibited G1/S transition. These findings indicate that miR-378, miR-375, miR-422a and miR-215 play an important role in CRC as tumour suppressors, whereas miR-135b functions as an oncogene; both groups of miRNA contribute to CRC pathogenesis.
Molecular Cancer, 2006
MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Although the number of verified human miRNA is still expanding, only few have been functionally described. However, emerging evidences suggest the potential involvement of altered regulation of miRNA in pathogenesis of cancers and these genes are thought to function as both tumours suppressor and oncogenes. In our study, we examined by Real-Time PCR the expression of 156 mature miRNA in colorectal cancer. The analysis by several bioinformatics algorithms of colorectal tumours and adjacent non-neoplastic tissues from patients and colorectal cancer cell lines allowed identifying a group of 13 miRNA whose expression is significantly altered in this tumor. The most significantly deregulated miRNA being miR-31, miR-96, miR-133b, miR-135b, miR-145, and miR-183. In addition, the expression level of miR-31 was correlated with the stage of CRC tumor. Our results suggest that miRNA expression profile could have relevance to the biological and clinical behavior of colorectal neoplasia.
Cancers
An increasing number of studies suggest the implication of microRNAs (miRNAs) in colorectal (CRC) carcinogenesis and disease progression. Nevertheless, the basic mechanism is not yet clear. We determined plasma miRNA expression levels using Agilent microarray technology followed by overlapping with The Cancer Genome Atlas (TCGA) tissue data and a qRT-PCR validation step and analysis of the altered miRNA signatures to emphasize new mechanistic insights. For TGCA dataset, we identified 156 altered miRNAs (79 downregulated and 77 upregulated) in colorectal tissue samples versus normal tissue. The microarray experiment is based on 16 control samples, 38 CRC plasma samples from colorectal cancer patients who have not undergone chemotherapy, and 17 chemo-treated samples. In the case of the analysis of CRC cancer versus healthy control we identified 359 altered miRNAs (214 downregulated and 60 upregulated), considering as the cutoff value a fold-change of ±1.5 and p < 0.01. An additiona...
Gene, 2015
Colorectal cancer is one of the frequently seen malignancies in the world. To date, several oncogenes and tumor 26 suppressor genes have been identified and linked to colorectal cancer pathogenesis. Although recent advances in 27 the diagnosis and therapy of colorectal cancer are promising, identifying novel genetic contributors is still high 28 priority. In the present study, expression profile of some cancer-related genes and their regulatory miRNA mol-29 ecules were evaluated by using a high-throughput real-time PCR method. For the study, a total of 54 patients di-30 agnosed with CRC and normal colon tissue samples of 42 healthy controls were included. For the expression 31 analysis, total RNA was extracted from FFPE tissue samples and converted to cDNA. All expression analyses 32 were assessed by using Fluidigm Microfluidic Dynamic Array chips for 96 samples and the reactions were held 33 in Fluidigm BioMark™ HD System Real-Time PCR. As a result of the study, expression of the ADAMTS1, FHIT, 34 RUNX1, RUNX3 and WWOX genes was shown to be significantly altered in CRC tissues in contrast to normal tis-35 sue samples. Moreover, miR-378a-3p, miR-155-5p, miR-193b-3p, miR-96-5p, miR-17-5p, miR-27a-3p, miR-36 133b, miR-203a, miR-205-5p, miR-34c-5p, miR-130a-3p, miR-301a-3p, miR-132-3p, miR-222-3p, miR-34a-5p, 37 miR-21-5p, miR-29a-3p and miR-29b-3p were found to be significantly deregulated in CRC. Consequently, re-38 sults of the current study strongly suggest the involvement of novel cancer-related genes and their regulatory 39 miRNA in CRC physiopathology.
MicroRNA Expression and Correlation with mRNA Levels of Colorectal Cancer-Related Genes
Journal of Gastrointestinal Cancer, 2019
Introduction MicroRNAs (miRNAs), as a family of non-coding RNAs, have opened a new window in cancer biology and transcriptome. It has been revealed that miRNAs post-transcriptionally regulate the gene expression and involve in colorectal cancer (CRC) development and progression. Our aim was to examine the differential expression of miRNAs in a CRC and to correlate their expression levels with mRNA levels of CRC-related genes (K-ras, APC, p53). Materials and Methods Seventy-two colorectal tumor tissues from patients with newly diagnosed CRC and 72 matched normal adjacent tissues were analyzed. Relative expression of seven CRC-related miRNAs (miR-21, miR-31, miR-20a, miR-133b, and miR-145, miR-135b and let-7g) and three CRC-related genes (K-ras, APC, p53) was detected using the SYBR Green quantitative real-time PCR technique. The correlation between gene expression levels and clinicopathological features was evaluated. Results Our results showed a significant difference between the two groups for the expression level of miR-21, miR-31, miR-145, and miR-20a (P < 0.001). Also, a significant difference between the two groups for the expression level of K-ras was found (P < 0.001). Further analysis revealed an inverse significant correlation between miR-145 and K-ras (R 2 = 0.662, P < 0.001), while a positive correlation was observed between miR-21 and K-ras (R 2 = 0.732, P < 0.001). Conclusion Dysregulation of miRNAs and correlation with molecular signaling pathways designated a biological role for miRNAs in various cellular mechanisms underlying CRC. On the other hand, the pattern of miRNAs expression and its correlation with transcriptional status are helpful to discovery biomarkers and design therapeutics for CRC.
BMC Cancer, 2012
Background: MicroRNAs (miRNAs) regulate gene expression by binding to mRNA, and can function as oncogenes or tumor suppressors depending on the target. In this study, using qRT-PCR, we examined the expression of six miRNAs (miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145) in tumors from 193 prospectively recruited patients with colorectal cancer, and associations with clinicopathological parameters and patient outcome were analyzed. The miRNAs were chosen based on previous studies for their biomarker potential and suggested biological relevance in colorectal cancer. Methods: The miRNA expression was examined by qRT-PCR. Associations between miRNA expression and clinicopathological variables were explored using Mann-Whitney U and Kruskal-Wallis test while survival was estimated using the Kaplan-Meier method and compared using the log-rank test.
Integrated Analysis of miRNA and mRNA endorses a twenty miRNAs signature for colorectal carcinoma
International Journal of Molecular Sciences, 2019
Colorectal cancer (CRC) ranks as the most frequent carcinoma worldwide. CRC patients show strong prognostic differences and responses to treatment, and 20% have incurable metastatic disease at diagnosis. We considered it essential to investigate mechanisms that control cellular regulatory networks, such as the miRNA-mRNA interaction, known to be involved in cancer pathogenesis. We conducted a human miRNome analysis by TaqMan low density array, comparing CRC to normal colon tissue (NCT, and experimentally identified gene targets of miRNAs deregulated, by anti-correlation analysis, with the CRC whole-transcriptome profile obtained from RNASeq experiments. We identified an integrated signature of 20 deregulated miRNAs in CRC. Enrichment analyses of the gene targets controlled by these miRNAs brought to light 25 genes, members of pathways known to lead to cell growth and death (CCND1, NKD1, FZD3, MAD2L1, etc.), such as cell metabolism (ACSL6, PRPS1-2). A screening of prognosis-mediated miRNAs underlined that the overexpression of miR-224 promotes CRC metastasis, and is associated with high stage and poor survival. These findings suggest that the biology and progression of CRC depend on deregulation of multiple miRNAs that cause a complex dysfunction of cellular molecular networks. Our results have further established miRNA-mRNA interactions and defined multiple pathways involved in CRC pathogenesis.
Co-modulated behavior and effects of differentially expressed miRNA in colorectal cancer
BMC Genomics, 2013
Background: MicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in colorectal cancer (CRC) progression through silencing gene expression. Numerous dysregulated miRNAs simultaneously participate in the process of colon cancer development. However, the detailed mechanisms and biological functions of co-expressed miRNA in colorectal carcinogenesis have yet to be fully elucidated. Results: The objective of this study was to identify the dysfunctional miRNAs and their target mRNAs using a wetlab experimental and dry-lab bioinformatics approach. The differentially expressed miRNA candidates were identified from 2 miRNA profiles, and were confirmed in CRC clinical samples using reported target genes of dysfunctional miRNAs to perform functional pathway enrichment analysis. Potential target gene candidates were predicted by an in silico search, and their expression levels between normal and colorectal tumor tissues were further analyzed using real-time polymerase chain reaction (RT-PCR). We identified 5 miRNAs (miR-18a, miR-31, miR-96, miR-182, and miR-224) and 10 miRNAs (miR-1, miR-9, miR-10b, miR-133a, miR-143, miR-137, miR-147b, miR-196a/b, and miR-342) that were significantly upregulated and downregulated in colon tumors, respectively. Bioinformatics analysis showed that the known targets of these dysregulated miRNAs simultaneously participated in epithelial-to-mesenchymal transition (EMT), cell growth, cell adhesion, and cell cycles. In addition, we identified that several pivotal target gene candidates may be comodulated by dysfunctional miRNAs during colon cancer progression. Finally, 7 candidates were proven to be differentially expressed, and had an anti-correlationship with dysregulated miRNA in 48 CRC samples. Conclusion: Fifteen dysfunctional miRNAs were engaged in metastasis-associated pathways through comodulating 7 target genes, which were identified by using a multi-step approach. The roles of these candidate genes are worth further exploration in the progression of colon cancer, and could potentially be targets in future therapy.
MicroRNAs in colorectal cancer: translation of molecular biology into clinical application
Molecular Cancer, 2009
MicroRNAs (miRNAs) are small non-coding RNAs 18-25 nucleotides in length that downregulate gene expression during various crucial cell processes such as apoptosis, differentiation and development. Changes in the expression profiles of miRNAs have been observed in a variety of human tumors, including colorectal cancer (CRC). Functional studies indicate that miRNAs act as tumor suppressors and oncogenes. These findings significantly extend Vogelstein's model of CRC pathogenesis and have shown great potential for miRNAs as a novel class of therapeutic targets. Several investigations have also described the ability of miRNA expression profiles to predict prognosis and response to selected treatments in CRC patients, and support diagnosis of CRC among cancer of unknown primary site. miRNAs' occurrence has been repeatedly observed also in serum and plasma, and miRNAs as novel minimally invasive biomarkers have indicated reasonable sensitivity for CRC detection and compare favorably with the fecal occult blood test. In this review, we summarize the knowledge regarding miRNAs' functioning in CRC while emphasizing their significance in pathogenetic signaling pathways and their potential to serve as disease biomarkers and novel therapeutic targets.
MicroRNA Expression Levels and Histopathological Features of Colorectal Cancer
Journal of Gastrointestinal Cancer, 2018
Introduction Non-coding RNAs have opened a new window in cancer biology. MicroRNAs (miRNAs), as a family of noncoding RNAs, play an important role in the gene regulation. The aberrant expression of these small molecules has been documented to involve in colorectal cancer (CRC) pathogenesis. This study aimed to examine the expression of miRNAs in CRC and to correlate their expression levels with histological markers (Ki-67 and CD34). Materials and Methods Tumor tissues and matched normal adjacent tissues were collected from 36 patients with newly diagnosed CRC. Immunohistochemical (IHC) staining of tumor tissues was performed for Ki-67 (proliferation) and CD34 (angiogenesis) markers, and the immunoexpression staining scores were obtained. A polyadenylation SYBER Green quantitative real-time PCR technique was used to quantify the expression of a panel of five CRC-related miRNAs (hsa-miR-21, 31, 20a, 133b, and 145). Histopathological (H) scores and miRNA expression levels were correlated with clinicopathological features including the degree of differentiation, staging, and lymphovascular invasion. Results Our results showed the significant difference between the two groups for the expression level of hsa-miR-21, hsa-miR-31, hsa-miR-145, and miR-20a (P < 0.001), but not for hsa-miR-133b (P = 0.57). Further analysis revealed an inverse significant correlation between hsa-miR-145 and Ki-67 (r = − 0.942, P < 0.001). While a positive correlation was observed between hsa-miR-21 and Ki-67 (r = 0.920, P < 0.001), and hsa-miR-21 and CD34 (r = 0.981, P < 0.001). Also, a positive correlation between hsa-miR-31 and Ki-67 (r = 0.913, P < 0.001), hsa-miR-31 and CD34 (r = 0.798, P < 0.05), hsa-miR-20a and Ki-67 (r = 0.871, P < 0.001), and hsa-miR-20a and CD34 (r = 0.890, P < 0.001) was found. Conclusion Dysregulation of miRNAs and correlation with molecular histopathology indicate a biological role for miRNAs in various cellular processes including cell proliferation and angiogenesis in CRC development. On the other hand, the pattern of miRNA expression and its correlation with histological markers are potentially valuable to apply as diagnostic biomarkers for CRC.