Extraction, Transmission, Host Range, Properties, and Ecology of a Virus from Gynura that Interacts with the Exocortis Pathogen (original) (raw)

Characterization of petunia flower mottle virus (PetFMV), a new potyvirus infecting Petunia x hybrida

Archives of Virology, 1998

With the introduction of cutting-grown Petunia x hybrida plants on the European market, a new potyvirus which showed no serological reaction with antisera against any other potyviruses infecting petunias was discovered. Infected leaves contained flexuous rod-shaped virus particles of 750 – 800 nm in length and inclusion bodies (pinwheel structures) typical for potyviruses in ultrathin leaf sections. The purified coat protein with a Mr of approximately 36 kDa could be detected in Western immunoblots with a specific antibody to the coat protein of the petunia-infecting virus. The 3′ end of the viral genome encompassing the 3′ non-coding region, the coat protein gene, and part of the NIb gene was amplified from infected leaf material by IC/PCR using degenerate and specific primers. Sequences of PCR-generated cDNA clones were compared to other known sequences of potyviruses. Maximum homology of 56% was found in the 3′ non-coding region between the petunia isolate and other potyviruses. A maximum homology of 69% was found between the amino acid sequence of the coat protein of the petunia isolate and corresponding sequences of other potyviruses. These data indicate that the petunia-infecting virus is a previously undescribed potyvirus and the name petunia flower mottle virus (PetFMV) is suggested.

Plant Viruses: Evolution and Management

2016

part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Petunia vein banding virus: Characterization of a New Tymovirus from Petunia × hybrida

Plant Disease, 2000

Petunia plants from a nursery in the State of Rio Grande do Sul, Brazil, showed pronounced vein banding and contained isometric particles with diameters of approximately 45 and 30 nm. The larger ones apparently represent a caulimovirus, while the smaller ones, which included both empty shells and full particles, were identified as those of a new tymovirus for which we propose the name Petunia vein banding virus (PetVBV). Originally, PetVBV was transmitted only with difficulty to healthy petunia plants. However, from an experimentally infected petu-nia, it was later readily transmitted also to Nicotiana benthamiana and Nicandra physalodes, but not to other species in the Solanaceae or other plant families. It produces cytopathic effects typical for tymovirus infections. Its coat protein shows approximately 65% amino acid sequence identity with those of Eggplant mosaic and Andean potato latent viruses, to which it is also serologically more closely related than to any other tymoviruses.

Mechanism of Arthropod-mediated Transmission of Plant Viruses - A Review

Journal of Advanced Zoology

In the intricate world of botanical life, an often-overlooked menace lurks – plant viruses. Viruses invade their target and hijack the plant cell's mechanisms to multiply and reproduce. The impact of these microscopic assailants is profound, affecting food security, food safety, national economies, biodiversity, and the rural environment. Plant viruses, although small in stature, wield immense influence in the plant kingdom. They are sub-microscopic entities comprised of genetic material, either DNA or RNA, encased within a protective protein coat. They need a medium of transmission for survival and spread, which can be air, water, contaminated tools, or certain other organisms known as vectors. These vectors, often insects, fungi, or nematodes, serve as intermediaries between the virus and its plant host, facilitating transmission and infection. Understanding the intricate interactions between plant viruses and their vectors is vital for developing effective control strategies ...

Improved Detection of Petunia Vein Clearing Caulimovirus

HortScience, 2000

Petunia vein clearing virus (PVCV), a possible member of the caulimovirus group, was detected in several cultivars of vegetatively propagated petunias (Petunia ×hybrida Hort. Volm.-Andr.) grown in commercial nurseries. Leaf dip preparations and ultrathin sections of leaf tissue were analyzed by transmission electron microscopy (TEM). Spherical virus particles, 45-50 nm in diameter, were observed in samples taken from symptomatic petunia plants. The virus was purified and a polyclonal antiserum was prepared. In immuno-specific electron microscopy (ISEM), the PVCV antiserum-treated samples reacted with a distinct decoration on the virus suspect particles. A polymerase chain reaction (PCR)-based assay was used to detect PVCV in total nucleic acid extracts derived from infected petunia plants. Two primer pairs were designed to flank a 736-base-pair sequence located in the RNA-dependent RNA polymerase gene of the PVCV genome. A DNA fragment of predicted size was visualized in agarose gel...

Exploring the Host Range of Rose rosette virus among Herbaceous Annual Plants

Pathogens

To study the host range of Rose rosette virus (RRV), we employed crude sap inoculum extracted from RRV-infected roses and the RRV infectious clone. We inoculated plants from the families Solanaceae, Cucurbitaceae, Leguminosae, Malvaceae, Amaranthaceae, and Brassicaceae. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect RRV in the inoculated plants throughout their growth stages. Interestingly, RRV was detected in the newly developed leaves of tomato, pepper, tobacco, cucumber, squash, zucchini, pumpkin, pea, peanut, soybean, spinach, okra, and Chenopodium spp. The speed of upward advancement of RRV within infected plants was variable between plants as it took two to three weeks for some plant species and up to five weeks in other plant species to emerge in the newest leaves. No severe symptoms were detected on most of the inoculated plants. Chenopodium spp., spinach, cucumber and Nicotiana rustica exhibited either chlorotic or necrotic lesions with variable...

Differences in infectivity and pathogenicity of two Plantago asiatica mosaic virus isolates in lilies

European Journal of Plant Pathology, 2018

Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus in the family Alphaflexiviridae and has been isolated from a variety of host plants. In particular, PlAMV isolates from ornamental lilies (Lilium spp.) cause necrotic symptoms in these plants, which significantly reduces their commercial value. However, it has not been clear whether PlAMV isolates from other host plants differ in their infectivity and/or pathogenicity to ornamental lilies, and whether growth conditions affect infectivity and pathogenicity. In this study, we inoculated an edible lily species (Lilium leichtlinii) and seven varieties of ornamental lilies with two PlAMV isolates, an isolate from ornamental lily (PlAMV-OL) and an isolate from edible lily (PlAMV-Li1). We found that PlAMV-OL showed higher infection rates and exhibited necrotic symptoms more frequently in lilies than PlAMV-Li1. Moreover, we observed higher infection rates of PlAMV-OL in open field than in greenhouse, and higher rates of necrotic symptoms in autumn test than in spring test, suggesting that growth conditions and season affect infectivity and pathogenicity of PlAMV in lilies. Our study would provide important information for estimating the risk of necrotic disease caused by PlAMV, as well as for cultivation management preventing the occurrence of the disease.

Host specificity of plant viruses

Virology, 1970

A method was developed for isolating infectious RNA from cucumber virus 4 (CV4), based on extraction with phenol at high pH in the presence of bentonite. CV4-RNA was reconstituted with protein from tobacco mosaic virus, forming a "hybrid virus."