Adaptive Object Detection with Dual Multi-Label Prediction (original) (raw)

Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019

We introduce a novel unsupervised domain adaptation approach for object detection. We aim to alleviate the imperfect translation problem of pixel-level adaptations, and the source-biased discriminativity problem of feature-level adaptations simultaneously. Our approach is composed of two stages, i.e., Domain Diversification (DD) and Multidomain-invariant Representation Learning (MRL). At the DD stage, we diversify the distribution of the labeled data by generating various distinctive shifted domains from the source domain. At the MRL stage, we apply adversarial learning with a multi-domain discriminator to encourage feature to be indistinguishable among the domains. DD addresses the source-biased discriminativity, while MRL mitigates the imperfect image translation. We construct a structured domain adaptation framework for our learning paradigm and introduce a practical way of DD for implementation. Our method outperforms the state-of-the-art methods by a large margin of 3% ∼ 12% in terms of mean average precision (mAP) on various datasets.

Incremental Multi-Target Domain Adaptation for Object Detection with Efficient Domain Transfer

ArXiv, 2021

Techniques for multi-target domain adaptation (MTDA) seek to adapt a recognition model such that it can generalize well across multiple target domains. While several successful techniques have been proposed for unsupervised single-target domain adaptation (STDA) in object detection, adapting a model to multiple target domains using unlabeled image data remains a challenging and largely unexplored problem. Key challenges include the lack of bounding box annotations for target data, knowledge corruption, and the growing resource requirements needed to train accurate deep detection models. The later requirements are augmented by the need to retraining a model with previous-learned target data when adapting to each new target domain. Currently, the only MTDA technique in literature for object detection relies on distillation with a duplicated model to avoid knowledge corruption but does not leverage the source-target feature alignment after UDA. To address these challenges, we propose a...

Adapting Object Detectors with Conditional Domain Normalization

Computer Vision – ECCV 2020

Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain distribution gap. CDN is designed to encode different domain inputs into a shared latent space, where the features from different domains carry the same domain attribute. To achieve this, we first disentangle the domain-specific attribute out of the semantic features from source domain via a domain embedding module, which learns a domain-vector to characterize the domain attribute information. Then this domain-vector is used to encode the features from target domain through a conditional normalization, resulting in different domains' features carrying the same domain attribute. We incorporate CDN into various convolution stages of an object detector to adaptively address the domain shifts of different level's representation. In contrast to existing adaptation works that conduct domain confusion learning on semantic features to remove domainspecific factors, CDN aligns different domain distributions by modulating the semantic features of target domains conditioned on the learned domain-vector of the source domain. Extensive experiments show that CDN outperforms existing methods remarkably on both real-to-real and synthetic-to-real adaptation benchmarks, including 2D image detection and 3D point cloud detection.

Synergizing between Self-Training and Adversarial Learning for Domain Adaptive Object Detection

ArXiv, 2021

We study adapting trained object detectors to unseen domains manifesting significant variations of object appearance, viewpoints and backgrounds. Most current methods align domains by either using image or instance-level feature alignment in an adversarial fashion. This often suffers due to the presence of unwanted background and as such lacks class-specific alignment. A common remedy to promote class-level alignment is to use high confidence predictions on the unlabelled domain as pseudo labels. These high confidence predictions are often fallacious since the model is poorly calibrated under domain shift. In this paper, we propose to leverage model’s predictive uncertainty to strike the right balance between adversarial feature alignment and class-level alignment. Specifically, we measure predictive uncertainty on class assignments and the bounding box predictions. Model predictions with low uncertainty are used to generate pseudo-labels for self-supervision, whereas the ones with ...

Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation

Computer Vision – ECCV 2020, 2020

Unsupervised domain adaptation enables to alleviate the need for pixel-wise annotation in the semantic segmentation. One of the most common strategies is to translate images from the source domain to the target domain and then align their marginal distributions in the feature space using adversarial learning. However, source-to-target translation enlarges the bias in translated images and introduces extra computations, owing to the dominant data size of the source domain. Furthermore, consistency of the joint distribution in source and target domains cannot be guaranteed through global feature alignment. Here, we present an innovative framework, designed to mitigate the image translation bias and align cross-domain features with the same category. This is achieved by 1) performing the target-to-source translation and 2) reconstructing both source and target images from their predicted labels. Extensive experiments on adapting from synthetic to real urban scene understanding demonstrate that our framework competes favorably against existing state-of-the-art methods.

Unsupervised Domain Adaptive Object Detection using Forward-Backward Cyclic Adaptation

ArXiv, 2020

We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training. Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment. However, aligning the marginal feature distributions does not guarantee the alignment of class conditional distributions. This limitation is more evident when adapting object detectors as the domain discrepancy is larger compared to the image classification task, e.g. various number of objects exist in one image and the majority of content in an image is the background. This motivates us to learn domain invariance for category level semantics via gradient alignment. Intuitively, if the gradients of two domains point in similar directions, then the learning of one domain can improve that of another domain. To achieve gradient alignment, we propose Forward-Backward Cyclic Adapt...

One-Shot Unsupervised Domain Adaptation for Object Detection

2020 International Joint Conference on Neural Networks (IJCNN), 2020

The existing unsupervised domain adaptation (UDA) methods require not only labeled source samples but also a large number of unlabeled target samples for domain adaptation. Collecting these target samples is generally time-consuming, which hinders the rapid deployment of these UDA methods in new domains. Besides, most of these UDA methods are developed for image classification. In this paper, we address a new problem called one-shot unsupervised domain adaptation for object detection, where only one unlabeled target sample is available. To the best of our knowledge, this is the first time this problem is investigated. To solve this problem, a one-shot feature alignment (OSFA) algorithm is proposed to align the low-level features of the source domain and the target domain. Specifically, the domain shift is reduced by aligning the average activation of the feature maps in the lower layer of CNN. The proposed OSFA is evaluated under two scenarios: adapting from clear weather to foggy weather; adapting from synthetic images to real-world images. Experimental results show that the proposed OSFA can significantly improve the object detection performance in target domain compared to the baseline model without domain adaptation.

Multi-Adversarial Domain Adaptation

2018

Recent advances in deep domain adaptation reveal that adversarial learning can be embedded into deep networks to learn transferable features that reduce distribution discrepancy between the source and target domains. Existing domain adversarial adaptation methods based on single domain discriminator only align the source and target data distributions without exploiting the complex multimode structures. In this paper, we present a multi-adversarial domain adaptation (MADA) approach, which captures multimode structures to enable fine-grained alignment of different data distributions based on multiple domain discriminators. The adaptation can be achieved by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Empirical evidence demonstrates that the proposed model outperforms state of the art methods on standard domain adaptation datasets.

Towards Category and Domain Alignment: Category-Invariant Feature Enhancement for Adversarial Domain Adaptation

2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021

Adversarial domain adaptation has made impressive advances in transferring knowledge from the source domain to the target domain by aligning feature distributions of both domains. These methods focus on minimizing domain divergence and regard the adaptability, which is measured as the expected error of the ideal joint hypothesis on these two domains, as a small constant. However, these approaches still face two issues: (1) Adversarial domain alignment distorts the original feature distributions, deteriorating the adaptability; (2) Transforming feature representations to be domain-invariant needs to sacrifice domain-specific variations, resulting in weaker discriminability. In order to alleviate these issues, we propose category-invariant feature enhancement (CIFE), a general mechanism that enhances the adversarial domain adaptation through optimizing the adaptability. Specifically, the CIFE approach introduces category-invariant features to boost the discriminability of domain-invariant features with preserving the transferability. Experiments show that the CIFE could improve upon representative adversarial domain adaptation methods to yield state-of-the-art results on five benchmarks.

Conditional Adversarial Domain Adaptation

2018

Adversarial learning has been embedded into deep networks to learn disentangled and transferable representations for domain adaptation. Existing adversarial domain adaptation methods may struggle to align different domains of multimodal distributions that are native in classification problems. In this paper, we present conditional adversarial domain adaptation, a principled framework that conditions the adversarial adaptation models on discriminative information conveyed in the classifier predictions. Conditional domain adversarial networks (CDANs) are designed with two novel conditioning strategies: multilinear conditioning that captures the cross-covariance between feature representations and classifier predictions to improve the discriminability, and entropy conditioning that controls the uncertainty of classifier predictions to guarantee the transferability. Experiments testify that the proposed approach exceeds the state-of-the-art results on five benchmark datasets.